

Fort Hall Mine Landfill
1500 North Fort Hall Mine Road
Pocatello, Idaho

FINAL

2023 Fall Semiannual Cell 1, 2, and 4
Groundwater Monitoring and
Remediation System Operation and
Maintenance Report

PREPARED FOR:
Bannock County Public Works
5500 South Fifth Avenue
Pocatello, Idaho 83204

PREPARED BY:
CDM Smith
560 North Park Avenue, Suite 300
Helena, Montana 59601

October 2024

**CDM
Smith**

Table of Contents

Table of Contents	i
Section 1 Introduction	1-1
1.1 Purpose of Report.....	1-1
1.2 Report Organization	1-2
1.3.1 Site History and Description	1-3
1.3.1.1 Landfill Construction and Use.....	1-3
1.3.1.2 Historical Contamination and Regulatory Actions	1-5
1.3.1.3 Groundwater Monitoring Well Network.....	1-6
1.3.2 Site Geology	1-7
1.3.3 Site Hydrogeology and Groundwater Discharge	1-9
1.3.4 Nature and Extent of Chemicals of Concern.....	1-11
1.3.4.1 Cell 1 Source and Offsite Plume	1-12
1.3.4.2 Cell 2	1-13
1.3.4.3 Cell 4	1-13
1.3.5 Fate and Transport of Chlorinated Ethenes	1-13
1.3.6 Mobilization of Redox-Sensitive Metals	1-14
1.3.7 Geochemical Conditions in the Cell 1 Source Area and Offsite Plume	1-14
1.3.8 Remediation System	1-15
Section 2 Field Activities	2-1
2.1 Groundwater Sampling	2-1
2.1.1 Private Property Access	2-1
2.1.2 Water Level Measurement.....	2-1
2.1.3 Groundwater Sampling Procedures.....	2-2
2.1.3.1 Monitoring Wells	2-2
2.1.3.2 Remediation System Wells and Effluent	2-2
2.1.3.3 Passive Sampling Comparability Study	2-2
2.1.4 Sample Analysis	2-2
2.1.4.1 Cell 1 Source and Offsite Plume	2-3
2.1.4.2 Remediation System	2-3
2.1.4.3 Cell 2	2-3
2.1.4.4 Cell 4	2-4
2.1.5 Decontamination and Investigation-Derived Waste.....	2-4
2.1.6 Deviations.....	2-4
2.1.6.1 Synoptic Water Level Measurement	2-4
2.1.6.2 Cell 1 and Offsite Monitoring Wells.....	2-4
2.1.6.3 Remediation System Wells and Effluent	2-4
2.1.6.4 Cell 2 and 4 Monitoring Wells.....	2-5
2.2 Remediation System Maintenance Activities	2-5
2.2.1 Remediation Well Rehabilitation	2-5
2.2.2 Remediation System Operation and Maintenance	2-5
2.2.2.1 Operations.....	2-5
2.2.2.2 Maintenance	2-5

2.2.2.3 System Upgrades and Repairs	2-6
2.3 Leachate Sampling and Landfill Gas Well Water Level Measurements.....	2-6
Section 3 Groundwater Monitoring Results	3-1
3.1 Groundwater Data Usability Assessment.....	3-1
3.1.1 Precision	3-2
3.1.2 Accuracy.....	3-2
3.1.3 Comparability	3-2
3.1.4 Completeness.....	3-3
3.1.5 Sensitivity.....	3-3
3.1.6 Deviations.....	3-3
3.2 Groundwater Elevations.....	3-3
3.2.1 Horizontal Gradient Evaluation.....	3-4
3.2.2 Vertical Gradient Evaluation	3-4
3.3 Cell 1 and Offsite Groundwater Results	3-4
3.3.1 VOCs.....	3-4
3.3.1.1 Cell 1 Source and Dissolved Phase Plume	3-4
3.3.1.2 Remediation System Extraction Wells	3-5
3.3.1.3 Offsite Monitoring Wells	3-5
3.3.2 Geochemical Parameters	3-6
3.3.2.1 Specific Conductance	3-6
3.3.2.2 Carbon.....	3-6
3.3.2.3 Redox Conditions	3-6
3.3.2.4 pH.....	3-8
3.3.2.5 Chloride and Ethene/Ethane.....	3-8
3.3.4 Performance of the Remediation System	3-8
3.4.1 Extraction Well Operations	3-9
3.4.2 Mass Removal.....	3-10
3.4.3 Performance of Remediation System	3-10
3.5 Cell 2 and 4 Groundwater Results	3-11
3.5.1 Cell 2 VOCs	3-11
3.5.2 Cell 4 VOCs	3-11
3.5.3 Cell 2 Inorganics	3-11
3.5.4 Cell 4 Inorganics	3-11
3.5.5 Geochemical Parameters	3-12
3.5.5.1 Specific Conductance	3-12
3.5.5.2 Redox Conditions	3-12
3.5.5.3 pH.....	3-12
Section 4 Groundwater Data Analysis	4-1
4.1 Updated Plume Extent.....	4-1
4.2 Landfill Monitoring Requirements.....	4-2
4.2.1 Detection Monitoring	4-2
4.2.2 Assessment Monitoring.....	4-2
4.2.3 Corrective Action.....	4-3
4.3 Cell 1 Source Area.....	4-3
4.3.1 Statistical Approach.....	4-3

4.3.2 VOCs.....	4-4
4.3.2.1 Comparison Latest Value to Standard.....	4-5
4.3.2.2 Comparison of UCL to Standard.....	4-5
4.3.2.3 Trend Analysis.....	4-5
4.3.3 Inorganics.....	4-7
4.3.3.1 Comparison Latest Value to Standard.....	4-7
4.3.3.2 Comparison of UCL to Standard.....	4-7
4.3.3.3 Trend Analysis.....	4-7
4.3.4 Cell 1 Statistical Summary.....	4-7
4.4 Cell 2	4-8
4.4.1 Statistical Approach.....	4-8
4.4.2 Organic Parameters	4-9
4.4.2.1 Comparison of Latest Value and LCLs to Standard.....	4-9
4.4.2.2 Comparison of Latest Value to Background.....	4-9
4.4.2.3 Trend Analysis.....	4-10
4.4.3 Inorganic Parameters.....	4-10
4.4.3.1 Comparison of Latest Value and Standards and LCLs	4-10
4.4.3.2 Comparison of Latest Value to Background.....	4-10
4.4.3.3 Trend Analysis.....	4-10
4.4.4 Cell 2 Statistical Summary.....	4-11
4.5 Cell 4	4-11
4.5.1 Statistical Approach.....	4-12
4.5.2 VOCs.....	4-13
4.5.2.1 Comparison of Latest Value to MDL and Standard.....	4-13
4.5.2.2 Trend Analysis.....	4-13
4.5.3 Inorganics.....	4-13
4.5.3.1 Comparison of Latest Value to Standards.....	4-13
4.5.3.2 Comparison of Latest Value to Background.....	4-13
4.5.3.3 Trend Analysis.....	4-14
4.5.4 Cell 4 Statistical Summary.....	4-14
Section 5 Conclusions and Recommendations	5-1
5.1 Cell 1 Source Area and Offsite Plume	5-1
5.1.1 Conclusions and Key Changes	5-1
5.1.2 Recommendations and Future Changes.....	5-1
5.2 Cells 2 and 4	5-2
5.2.1 Conclusions and Key Changes	5-2
5.2.2 Recommendations and Future Changes.....	5-3
5.3 Operation of Pump-and-Treat System.....	5-3
5.3.1 Conclusions and Key Changes	5-3
5.3.2 Recommendations and Future Changes.....	5-3
5.4 Passive Sampling Side-by-Side Comparison	5-4
5.4.1 Conclusions.....	5-4
5.4.2 Recommendations	5-4
Section 6 References	6-1

List of Figures

- Figure 1-1 Site Location Map
- Figure 1-2 Fort Hall Mine Landfill
- Figure 1-3 Groundwater Monitoring Well Network of the Fort Hall Mine Landfill
- Figure 1-4 Groundwater Monitoring Well Network of the Fort Hall Mine Landfill
- Figure 1-5 Total Precipitation by Year
- Figure 1-6 Chlorinated Ethene Degradation Pathways
- Figure 2-1 Fall 2023 Onsite Groundwater Sample Locations
- Figure 2-2 Landfill Gas Extraction Well Locations
- Figure 3-1 Onsite Potentiometric Contour Map
- Figure 3-2 Fall 2023 Chlorinated Ethene Results for Cell 1 North and Offsite Wells
- Figure 3-3 Fall 2023 Chlorinated Ethene Results for Cell 1 South
- Figure 3-4 Remediation System Well Locations
- Figure 3-5 Treatment System Monitoring Trends
- Figure 3-6 Fall 2023 Chlorinated Ethene Results for Cell 2 and 4 Wells
- Figure 4-1 Tetrachloroethene Plume Extent and Trend Analysis
- Figure 4-2 Trichloroethene Plume Extent and Trend Analysis

List of Tables

- Table 2-1 Summary of Sample Locations and Analysis Fall 2023
- Table 2-2 Well Construction Summary
- Table 2-3 Landfill Gas Well Water Levels
- Table 3-1 Monitoring Well Water Levels, Screened Intervals, and Vertical Gradients
- Table 3-2 Cell 1 Monitoring Wells Results
- Table 3-3 Offsite Monitoring Wells Results
- Table 3-4 Remediation Wells Results
- Table 3-5 Remediation Well Status and Groundwater Production Summary
- Table 3-6 Injection Well Analytical Results
- Table 3-7 Cell 2 Monitoring Wells Results
- Table 3-8 Cell 4 Monitoring Wells Results
- Table 4-1 Cell 1 Statistical Summary – VOCs
- Table 4-2 Offsite Statistical Summary – VOCs
- Table 4-3 Remediation System Extraction Well Statistical Summary – PCE and TCE
- Table 4-4 Spring and Fall 2023 PCE and TCE Trends Comparison
- Table 4-5 Cell 1 Statistical Summary – Inorganics
- Table 4-6 Cell 2 Statistical Summary – VOCs
- Table 4-7 Cell 2 Statistical Summary – Other Organics
- Table 4-8 Cell 2 Statistical Summary – Inorganics
- Table 4-9 Cell 4 Statistical Summary – VOCs
- Table 4-10 Cell 4 Statistical Summary – Inorganics
- Table 5-1 Recommendations for Spring 2024 Sampling
- Table 5-2 Recommendations for Fall 2024 Sampling

Appendices

Appendix A Sampling Plan

Appendix B Field Documentation

Appendix C Passive Sampling Report and Fall 2023 Groundwater Data

Appendix D Data Usability Assessment Report

Appendix E Laboratory Reports (Data Packages)

Appendix F VOCs, Geochemistry, and Inorganics Trend Charts

Appendix G Statistical Methods, Approach, and Analysis

Acronyms and Abbreviations

amsl	above mean sea level
bgs	below ground surface
CAS	compliance agreement schedule
CFR	Code of Federal Regulations
cis-1,2-DCE	cis-1,2-dichloroethene
City	the City of Pocatello
cm/s	centimeter per second
CO	Consent Order
COC	chemical of concern
CSM	conceptual site model
DO	dissolved oxygen
DQO	data quality objective
EPA	U.S. Environmental Protection Agency
foot/foot	foot per foot
feet/day	feet per day
FHML	Fort Hall Mine Landfill
GCL	geocomposite clay liner
gpm	gallons per minute
HDPE	high-density polyethylene
IDAPA	Idaho Administrative Procedures Act
IDEQ	Idaho Department of Environmental Quality
IDGW	Idaho Groundwater Rule
IDWR	Idaho Department of Water Resources
J	estimated result
LCL	lower confidence limit
LCS/LCSD	laboratory control sample/laboratory control sample duplicate
LFG	landfill gas
LPRV	Lower Portneuf River Valley
MCL	maximum contaminant level
MDL	method detection limit
µg/L	micrograms per liter
µS/cm	microSiemen per centimeter
mg/L	milligram per liter
MS/MSD	matrix spike/matrix spike duplicate
MSW	municipal solid waste
MW	monitoring well
mV	millivolts
O&M	operations and maintenance
ORP	oxidation-reduction potential
%	percent
Paragon	Paragon Consulting, Inc.
PCA	principal component analysis
PCB	polychlorinated biphenyl

PCE	tetrachloroethene
PVA	Portneuf Valley Aquifer
QAPP	quality assurance project plan
QC	quality control
RCRA	Resource Conservation and Recovery Act
RL	reporting limit
RPD	relative percent difference
RW	remediation wells
S	summation statistic
S/D	shallow深深 (well)
SIM	selected ion monitoring
SOP	standard operating procedure
SVOC	semivolatile organic compound
2,3,7,8-TCDD	2,3,7,8-tetrachloro-p-dibenzodioxin
TCE	trichloroethene
TOC	total organic carbon
trans-1,2-DCE	trans-1,2-dichloroethene
UJ	estimated nondetect result
UCL	upper confidence limit
UPL	upper prediction limit
VC	vinyl chloride
VOC	volatile organic compound

This page intentionally left blank.

Section 1

Introduction

CDM Smith implemented groundwater sampling at select monitoring wells and remediation system extraction wells at the Fort Hall Mine Landfill (FHML) during the fall 2023 sampling event (October 8 through 15, 2023) under Amendment No. 1 to Task Order No. 11 of the Bannock County Master Services Agreement contract executed July 24, 2018. CDM Smith presented the sampling results in this groundwater monitoring report to satisfy monitoring requirements associated with the following:

- Idaho Department of Environmental Quality (IDEQ) Consent Order (CO) pursuant to the Idaho Environmental Protection and Health Act, Idaho Code §39-101 et seq. and the Idaho Solid Waste Facilities Act, §39-7401 et seq., to address chemicals of concern (COCs) (e.g., trichloroethene [TCE] and tetrachloroethene [PCE]) known to originate in Cell 1, the historical landfill operated before land disposal regulations were promulgated.
- IDEQ Compliance Agreement Schedule (CAS) pursuant to the Idaho Environmental Protection and Health Act, Idaho Code §39-101 et seq. and the Idaho Solid Waste Facilities Act, §39-7401 et seq., to bring FHML into compliance with Idaho Code §39-7401 and the Subtitle D requirements in Title 40 Code of Federal Regulations (CFR) Part 258 et seq. for monitoring of municipal solid waste (MSW) landfills (Criteria for Municipal Solid Waste Landfills, 40 CFR, §258, Subpart E, Appendices I and II, Federal Register Volume 56, Issue 196 [October 9, 1991]).

The groundwater sampling was completed under the *Final Fort Hall Mine Landfill, Groundwater Monitoring Program Plan Quality Assurance Project Plan* (QAPP), dated May 25, 2021 (CDM Smith 2021b). A summary of planned sampling is provided in **Appendix A**.

1.1 Purpose of Report

CDM Smith conducted the fall 2023 groundwater sampling event in accordance with the current CO and CAS between Bannock County and IDEQ. To comply with both the remedy performance monitoring for Cell 1 and the Resource Conservation and Recovery Act (RCRA) monitoring requirements for Cells 2 and 4, samples were collected from the Cell 1, 2, and 4 monitoring wells, and select offsite monitoring wells.

The purposes of this report are the following:

- Present analytical and field data that were collected during the fall 2023 groundwater sampling event.
- Update PCE and TCE groundwater plume extents and groundwater elevation potentiometric contour maps for the FHML Cell 1 source area and downgradient plume.
- Evaluate the current remediation system performance.

- Report operations and maintenance (O&M) activities for the remediation system.
- Update COC trend data and statistical analysis of COC trends.
- Provide the status of RCRA compliance monitoring at Cells 2 and 4 and the statistical analysis of detected parameters from Appendices I and II of 40 CFR §258, *Criteria for Municipal Solid Waste Landfills* (Federal Register 1991) against background levels and promulgated standards.
- Provide recommendations for operating the groundwater treatment system.

1.2 Report Organization

This report is organized into the following sections:

1.0 Introduction: This section describes the purpose and organization of the report and provides a summary of site background information and the conceptual site model (CSM), which includes the site location, sources of contamination, geologic and hydrogeologic framework, nature and extent of contamination, and a description of the remediation system.

2.0 Field Activities: This section presents a summary of the fall 2023 sampling activities and analysis, including private property notifications, groundwater sampling and analysis, decontamination and handling of investigation-derived waste, and deviations from the QAPP (CDM Smith 2021b). This section also summarizes the remediation system O&M, including well rehabilitation and equipment replacement.

3.0 Groundwater Monitoring Results: This section presents the results of the fall 2023 groundwater sampling activities and summarizes data quality and usability, potentiometric surface data, groundwater analytical results, and the performance of the remediation system.

4.0 Groundwater Data Analysis: This section presents the current nature and extent of the FHML TCE and PCE plumes and an updated evaluation of the COC trends and statistical analyses.

5.0 Conclusions and Recommendations: This section presents the conclusions of the data analysis and provides recommendations according to the decision criteria developed in the QAPP (CDM Smith 2021b) for treatment system maintenance activities at FHML.

6.0 References: This section presents references used to prepare this report.

The following appendices are also included:

Appendix A – Sampling Plan

Appendix B – Field Documentation

Appendix C – Passive Sampling Report and Fall 2023 Groundwater Data

Appendix D - Data Usability Assessment Report

Appendix E – Laboratory Reports (Data Packages)

Appendix F – VOCs, Geochemistry, and Inorganics Trend Charts

Appendix G – Statistical Methods, Approach, and Analysis 1.3 Background

The following sections briefly describe the site history and CSM, which are described further in the QAPP (CDM Smith 2021b). These sections include brief descriptions of the site location and history, sources of contamination, the geologic and hydrogeologic framework, previous investigations, and ongoing remediation system operations.

1.3.1 Site History and Description

FHML is located on North Fort Hall Mine Road in Bannock County, Idaho, approximately 7 miles southeast and hydrologically upgradient of Pocatello, Idaho (**Figure 1-1**). The landfill is alternately known as the Fort Hall Canyon Landfill or Bannock County Landfill (IDEQ 2016a), and it has received hazardous and nonhazardous waste since 1943.

1.3.1.1 Landfill Construction and Use

FHML currently consists of four cells, as shown in **Figure 1-2** (IDEQ 2016a). Cell 1 is closed and unlined and has historically received hazardous waste. Cells 2 and 4 are lined and currently receive waste under RCRA Subtitle D regulations. Cell 3 began operations around 1993 and receives construction and demolition waste (IDEQ 2016a).

Cell 1 received domestic and MSW, construction and demolition debris, and unknown commercial and industrial waste during active operation from 1943 to 1993 (Brown and Caldwell 1992; Maxim 2000a, 2000b). There is no leachate collection system for Cell 1, but a final cover was installed in 1993 (Maxim 2000b). In 2012, landfill gas (LFG) extraction wells and associated piping were installed (Paragon Consulting Inc. [Paragon] 2015).

Cell 1 started operating in 1943 as an unpermitted valley-fill dump. No information is available regarding landfill base construction, but because of the nature of the dump, it is assumed that no base preparation was constructed. Based on LFG collection system record drawings for wells in the Old Landfill Well Field (Paragon 2015) and discussions in the geotechnical investigation for the LFG-to-energy project (American Geotechnics 2012), the thickness of waste in Cell 1 varies from minimal (less than 5 feet) at the fill area edges to greater than 85 feet. Based on observations from the LFG extraction well installations, the bottom of waste ranges from approximately 4,900 feet above mean sea level (amsl) in the southern and central portions of the cell to approximately 4,730 feet amsl in the northern and western portions. Cell 1 area encompasses approximately 60 acres (**Figure 1-2**).

Landfill operations in Cell 1 ceased in 1993. Based on closure plans provided in the *Final Revisions to Preliminary Engineering Report, Bannock County, Idaho* (Brown and Caldwell 1993), the landfill was proposed to be closed with a cover consisting of 12 inches of onsite loess material excavated from the Cell 2 area followed by an 18-inch barrier layer of compacted fill with a permeability of less than or equal to 10^{-5} centimeters per second (cm/s). The barrier layer was to consist of 12 inches of soil plus another 6 inches of topsoil. The cover was designed to prevent, via evapotranspiration, approximately 90 percent (%) of precipitation from infiltrating the cover during a normal precipitation and evaporation year (Brown and Caldwell 1993). No as-built information was available regarding the actual placement of the Cell 1 cover.

Cell 2 began operating in 1993 and currently receives compost and MSW as a Subtitle D cell, complete with a leachate collection system that gravity drains to a collection pond (IDEQ 2016b). Under RCRA, assessment-level monitoring is currently required at Cell 2. In 2012, LFG extraction wells were installed (Paragon 2015).

The Cell 2 area is approximately 24 acres (**Figure 1-2**). The first phase of Cell 2 (Phase 1A-P1) was constructed in 1993 and began receiving waste shortly thereafter. Cell 2 was constructed under the Subtitle D regulations. According to the *Preliminary Engineering Report* (Brown and Caldwell 1993), the landfill base was constructed with a 60-millimeter high-density polyethylene (HDPE) membrane liner above 2 feet of compacted soil with a permeability less than or equal to 10^{-7} cm/s. There is a 2-foot-thick sand/gravel drainage layer above the liner that directs leachate to the leachate collection system. A heavy nonwoven geotextile was placed between the liner and the drainage layer (Maxim 2000a). This liner design was used for the first two phases (1A-P1 and 1A-P2) of the Cell 2 landfill (Maxim 2003).

Reportedly, during construction of the 1A-P1 landfill, the liner was ripped during placement of the leachate drainage layer. The rip was repaired during construction of the 1A-P2 landfill by placing the 1A-P2 liner over the ripped area and welding to the 1A-P1 liner below the rip (Maxim 2000a).

An alternative liner demonstration was submitted in 2000 for Phase 3 (1A-P3) construction (Maxim 2000a). The alternative liner demonstration recommended the use of a 0.25-inch geocomposite clay liner (GCL) as a replacement for the 2 feet of compacted soil below the HDPE liner. The GCL is reported to have a hydrated hydraulic conductivity of approximately 5×10^{-9} cm/s (Maxim 2000a). IDEQ approved the alternative liner prior to construction of the Phase 3 expansion (1A-P3) (elevation from 5,110 to 5,150 feet amsl). The alternative liner is reported to be constructed with 1 foot of compacted silt or native soil, GCL, 60-millimeter textured HDPE, a nonwoven geotextile, and 1.5 to 2 feet of well-graded sand (Maxim 2003). The Phase 4 expansion (1A-P4) was constructed with the same alternative liner as Phase 3 (1A-P3).

Leachate in the Cell 2 landfill is collected via a gravity drain system. The leachate collection system gravity drains from the cell sump to the Cell 2 lined leachate collection pond. Based on hydrologic evaluation of landfill performance models completed by Brown and Caldwell during the Cell 2 design, leachate generation is anticipated to be minimal (between zero and 100,000 gallons per year) (Brown and Caldwell 1993). Leachate that discharges to the Cell 2 leachate pond is managed by evaporation. According to Bannock County personnel, during higher-than-normal precipitation, excess generated leachate is pumped from the leachate pond and reapplied to the Cell 2 landfill working areas for promotion of LFG generation and dust control. Current monthly leachate generation estimates are unknown.

As originally designed, Cell 2 was intended to operate through 2012; however, evaluation of the side slopes indicated that substantial permitted airspace was not being used. Recovery of the unused airspace extended the landfill life. Further slope stability and capacity analysis performed by Paragon indicated that the final landfill elevation buildup could be increased, thereby extending the landfill life (Paragon 2017). Currently, Cell 2 receives MSW but is nearing the end of its operational life.

Cell 4 opened in 2016 and receives MSW (IDEQ 2016a). It was constructed with an alternative base liner similar to the last two phases of the Cell 2 landfill. The liner construction consists of the following components (starting from the uppermost layer):

1. A 2-foot operations layer of native material provides liner protection,
2. A 1-foot drainage gravel layer provides lateral drainage to the cell sump,
3. A woven geotextile provides separation between the operations layer and the drainage gravel layer,
4. A 16-ounce nonwoven geotextile, placed directly under the gravel layer, provides puncture protection for the HDPE geomembrane.
5. A composite barrier layer consisting of a textured 60-mil HDPE geomembrane and a GCL provides leachate containment.
6. A prepared subgrade with a cushion material layer provides a smooth and uniform surface for the composite barrier layer.

A gravity drain system collects leachate. The leachate collection system gravity drains from the cell sump to the Cell 4 lined leachate collection pond, where leachate is managed by evaporation. Leachate generation quantities are not measured at FHML.

Currently, the Cell 4 landfill expansion is under construction and will provide airspace through 2025. Final design and buildout reportedly will provide landfill airspace through 2048. All stormwater is diverted to channels that ultimately discharge to a containment basin for evaporation. Under RCRA, detection-level monitoring is currently required at Cell 4.

1.3.1.2 Historical Contamination and Regulatory Actions

In October 1991, volatile organic compound (VOC) contamination was identified in monitoring wells installed immediately downgradient of Cell 1 (Brown and Caldwell 1992). By 1993, high concentrations of TCE were detected in downgradient domestic wells within the Portneuf Valley Aquifer (PVA), and two municipal supply wells #14 and #33 (shown in **Figure 1-3**) were subsequently closed because of high TCE concentrations (Brown and Caldwell 1994).

In May 1993, Bannock County entered into a CO with the Idaho Department of Health and Welfare (now IDEQ) pursuant to the Idaho Environmental Protection and Health Act, Idaho Code §39-108, to assess and mitigate the impacts of TCE, PCE, and other VOCs originating from Cell 1 of FHML (IDEQ 2016a). In 2002, Bannock County installed a groundwater remediation system downgradient of Cell 1, at the mouth of Fort Hall Canyon. The purpose of the remediation system has been to capture and treat groundwater impacted by the unlined Cell 1 before the groundwater enters the PVA. The PVA is the sole source of drinking water for the Pocatello and Chubbuck, Idaho, communities, as well as the surrounding unincorporated Bannock County land.

In March 2015, IDEQ reviewed the remediation system and found it to be ineffective at removing environmental contamination. Concentrations of COCs were reported to be trending upward in wells located both upgradient and downgradient of the remediation system. The CSM for FHML

was determined to not accurately represent the nature and extent of groundwater contamination associated with FHML (IDEQ 2016a). Therefore, in November 2016, IDEQ and Bannock County terminated the 1993 CO and entered into a new CO for the systemic development of a revised remediation plan for Cell 1 (IDEQ 2016a). Separately, in November 2016, IDEQ and Bannock County entered into a CAS to address groundwater contamination and groundwater monitoring in compliance with RCRA at landfill Cells 2 and 4 (IDEQ 2016b).

Since 2018, CDM Smith has been conducting a groundwater monitoring program in accordance with the CAS and CO and reporting data in semiannual monitoring reports. In addition, site characterization activities, including surface and borehole geophysics, and a Cell 1 cap evaluation were performed under the *Final Site Characterization Plan* (CDM Smith 2019) to fill data gaps and improve the CSM. Ultimately, the remedy will be optimized to achieve containment of the COC plume. An injection pilot study and tracer study were conducted in 2023 in accordance with the *Pilot Study Work Plan* (CDM Smith 2023c) to evaluate potential technologies for remedy optimization. Performance monitoring and data analysis are ongoing.

1.3.1.3 Groundwater Monitoring Well Network

An extensive monitoring well network has been established throughout FHML and the PVA to evaluate the impacts of FHML on groundwater (**Figures 1-3** and **1-4**).

The data quality objectives (DQOs) of the groundwater monitoring well network are the following:

- Monitor the Cell 1 impacts to groundwater within the FHML and the offsite plume.
- Monitor and report in accordance with RCRA Subtitle D MSW requirements for Cells 2 and 4, according to Idaho Solid Waste Rules (Idaho Code §39-74) and 40 CFR §258.
- Monitor remediation system performance.

To satisfy these DQOs, the monitoring well network consists of multiple well groups, as follows:

- Cell 1 Source and Offsite Plume Wells:
 - **Cell 1 Monitoring Wells.** The Cell 1 monitoring well group currently consists of approximately 30 Bannock County groundwater monitoring wells sampled semiannually. These wells are downgradient of Cell 1 on FHML property (**Figure 1-4**) and are monitored to assess the extent of COCs immediately north-northeast of the Cell 1 boundary. Although Cell 1 is not regulated under the Subtitle D requirements in 40 CFR §258, a subset of monitoring wells is monitored for the parameters in Appendices I and II to evaluate whether the substantive requirements are being met and whether other COC impacts are observed downgradient from Cell 1. Additionally, the offsite monitoring well group comprises eight offsite monitoring wells located outside the FHML property boundary, three of which are monitored semiannually to assess the extent of offsite groundwater COC impacts.
 - **Domestic Wells.** There are at least 46 domestic groundwater wells in the PVA that have been monitored at various frequencies between 1992 and 2023 to assess the extent of the

offsite groundwater plume and monitor COC concentrations within and surrounding impacted domestic water wells.

- **Pocatello City Monitoring Wells.** The City of Pocatello (City) installed 16 groundwater monitoring wells to evaluate groundwater quality and track the COC plume migrating toward the municipal supply wells.
- **Pocatello City Municipal Supply Wells.** The City has 21 municipal supply wells. The City uses some of these wells to monitor the extent of the plume and the presence of COCs in the City's drinking water supply. Municipal supply wells #33 and #14 are the closest to FHML that have historically observed COC impacts. Neither well is currently operated for municipal supply.
- **Remediation System Wells.** Nine groundwater extraction wells and two injection wells (**Figure 1-4**) were installed as part of the remediation system for Cell 1. RW-16 was drilled but never hooked up to the remediation system.
- **Cell 2 and 4 Monitoring Well Network.** The Cell 2 monitoring well group consists of five Bannock County groundwater monitoring wells, and the Cell 4 monitoring well group consists of five groundwater monitoring wells. Nine wells were installed to evaluate compliance with RCRA Subtitle D requirements. Monitoring well MW-4 was originally a part of the monitoring network for Cell 1; however, upon IDEQ request, it was transferred to the Cell 4 monitoring network. MW-4 (Cell 4) and MW-7 (Cell 2) were impacted by waste originating from Cell 1 (AEC 2018b); therefore, they are not used to evaluate RCRA compliance for Cells 2 and 4. MW-7 is no longer sampled. The monitoring wells in Cells 2 and 4 are sampled semiannually for the parameters listed in Appendices I and/or II from 40 CFR §258.

1.3.2 Site Geology

Mapped by Rodgers et al. (2006), the FHML site is underlain by four geologic units. In order from youngest to oldest, these units are as follows:

- Alluvial fan deposits (Qfp): Alluvial fan deposits consist of poorly consolidated mud, silt, sand, and gravel deposited by the Fort Hall Canyon Creek as it exits Fort Hall Canyon. This unit is up to 100-feet thick. The alluvial fan deposits extend northward from the mouth of Fort Hall Canyon, thinning toward the Portneuf River. The alluvial fan deposits grade into the Lower Portneuf River Valley (LPRV) fill deposits that predate upper gravels from the Bonneville Flood event and form the benches along the southwestern edge of the LPRV (AEC 2018a).
- Alluvium (Qal): Alluvium consists of unconsolidated mud, silt, sand, and gravel deposited in the Fort Hall Canyon Creek valley and is up to 80-feet thick. Alluvium is found in the bottom of the canyon adjacent to Fort Hall Creek. These deposits grade into the alluvial fan deposits (Qfp) at the north end of the canyon.
- Loess (Ql): Loess is unconsolidated silt. Loess mantles the canyon hillsides, can be up to 70-feet thick, and overlies the Starlight Formation Conglomerate unit (Tsuc) in places onsite. Lewis and Fosberg (1982) classified the loess in the Fort Hall Canyon area as the Fort Hall Geosol, consisting of more than 75% silt.

- Starlight Formation Conglomerate unit (Tsuc): This is a clast-supported, moderately indurated cobble conglomerate with clasts derived from pre-Tertiary rocks in the region. The matrix supporting the clasts is reddish orange to reddish brown and is typically sandy but locally tuffaceous. The Starlight Formation Conglomerate unit (Tsuc) contains two persistent but discontinuous air-fall tuff beds (Tsur3 and Tsur4) and other lenses of air-fall tuff (e.g., Tsur). The rhyolite air-fall tuff unit (Tsur), mapped by Rodgers et al. (2006), is laminated to thick-bedded, white to light-gray air-fall tuff, up to 18-feet thick in several outcrops in the canyon south of the landfill and dips 20 degrees east-northeast.

In September 2019, boring MW-1903 was advanced to a depth of 198 feet below ground surface (bgs) to characterize the Starlight Formation below the existing remediation system extraction wells, which are typically 100 feet deep or less. Boring MW-1903 is in the canyon bottom near existing well pairs MW-104 shallow/deep (S/D) screened intervals, MW-105S/D, and the remediation wells (**Figure 1-4**).

In September and October 2019, boring MW-1902, located near the existing well pair MW-111S/D, was advanced to 258 feet bgs to characterize the Starlight Formation on the western flank of the canyon at the northeast toe of Cell 1 (**Figure 1-4**). In September 2020, the boring for MW-123 was completed on the east bank of the Fort Hall Canyon Creek (inset on **Figure 1-4**), and MW-122 was completed on the west bank.

The Starlight Formation Conglomerate unit (Tsuc) observed in boreholes MW-1902, MW-1903, MW-122, and MW-123 consisted of loose-to-cohesive, moist-to-saturated, and sandy gravel and gravelly sand with silt and some clay with intercalated dry rhyolitic tuff. Saturated intervals of sandy gravel and gravelly sand were infrequent (13 were observed over 450 feet of drilling in the borings for MW-1092 and MW-1093) and thin (ranging from 1- to 5-feet thick, with most 1- or 2-feet thick). Rock was not observed in any of these four borings. **Section 2.3** includes additional information about the completion of the borings for wells MW-122 and MW-123.

As part of the initial site investigations at the mouth of the Fort Hall Canyon in 1992 and 1993, Brown and Caldwell (1992 and 1994) observed the Fort Hall Canyon fault in the seismic refraction geophysical surveys. In this survey, Brown and Caldwell (1992 and 1994) estimated the fault was located 100 to 200 feet bgs at the mouth of the canyon and was approximately 180-feet wide. Trimble (1976) mapped the Fort Hall Canyon fault as a thrust fault. Rodgers et al. (2006) determined that the fault was a normal fault, with the Fort Hall Canyon on the downthrown side, and mapped it trending north through the Fort Hall Canyon and then west-northwest as it exits the canyon. The fault is estimated to have a dip of 15 to 20 degrees southwest, and it has a surface exposure on the west-facing slope of the canyon.

Fort Hall Canyon intersects the LPRV. The following six lithologic groups have been defined in the southern portion of the LPRV by Welhan et al. (1996):

- Bedrock, of variable composition, dominated by pink to white quartzite and varicolored shale or argillite, predominantly of Proterozoic age (Caddy Canyon Formation)
- Middle to late Tertiary basin-filling sediments and volcaniclastics of the Starlight Formation

- Quaternary valley-fill and alluvial deposits composed of nonindurated silty gravels and cobbles with lenses of sand, silt, and intercalated clays
- Portneuf Basalt deposited along the eastern edge of the LPRV
- Coarse-grained clean gravel and cobbles in the center of the LPRV, known as the Upper Gravels (equivalent to the Michaud Gravels in the northern LPRV), deposited by the Bonneville Flood event that compromised the most productive portion of the underlying PVA
- Silt “mantle” of variable thickness (0 to 43 feet) that overlies the Upper Gravels, originating from overbank flood material from periodic Portneuf River flooding

1.3.3 Site Hydrogeology and Groundwater Discharge

The aquifer system beneath FHML consists of loess, alluvium (associated with Fort Hall Canyon Creek), the alluvial fan extending to the north of the canyon, and the underlying Starlight Formation. The aquifer system is primarily unconfined beneath FHML, but some areas have evidence of confined conditions, particularly on the west side of Fort Hall Canyon Creek near the landfill and on the east side of the creek near MW-123. The water table is situated within the Starlight Formation in some areas and in the alluvium or loess in other areas. Units in the aquifer system are hydraulically connected and chemicals are expected to migrate between them. Groundwater in the alluvium and the Starlight Formation discharges into the PVA near monitoring well pairs MW-103S/D, MW-118D, and MW-116S, downgradient of the remediation system.

During a site walk in 2020, CDM Smith observed that groundwater springs to the south, and at higher elevations, discharges along a line across the entire hillside. The line of springs corresponds to the contact between the Quaternary loess (Ql) and Starlight Formation (Tsuc) on the Inkom geologic map (Rodgers et al. 2006). These observations suggest that the up-canyon springs are discharging along an aquitard, which was also observed from 58.3 to 68 feet bgs at well MW-123. It is reasonable to assume that a tuff unit might serve as an aquitard because in the borings completed in 2019 and 2020, the tuff units are weakly cemented and dry. Moreover, tuffs are laterally extensive because they form from volcanic ash falls that cover large areas. To assess if the upper aquitard observed in the MW-123 boring corresponds to the line of springs, a plane was inserted into the Leapfrog 3D model, and the orientation was adjusted to intersect the aquitard observed from 58.3 to 68 feet bgs at MW-123 and the contact between the Quaternary loess and Starlight Formation up-canyon from MW-123. This plane strikes north 80 degrees east (N80E) and dips 7 degrees north. The orientation of the rhyolite air-fall tuff, Unit 3 (Tsur3) at three locations and the rhyolite air-fall tuff (Tsur) at one location are reported on the Inkom geologic map (Rodgers et al. 2006). The strike of the rhyolite air-fall tuff, Unit 3 is about N30E with dips ranging from 21 to 31 degrees east-southeast. The strike of the rhyolite air-fall tuff at one location is about N30W with a dip of 29 degrees east-northeast. Strike and dip data for the tuff along Fort Hall Mine Creek and closer to the MW network is necessary to determine whether the plane inserted in the model coincides with a mapped tuff unit.

Seventeen wells were slug tested in 2020 to estimate hydraulic conductivity within the alluvium and Starlight Formation. Of the 17 wells tested, 1 is screened completely within the alluvium, 6 are screened in the shallow Starlight Formation, 1 is screened in the deeper Starlight Formation,

and 9 are screened across portions of the alluvium and shallow Starlight Formation. Wells screened across both the alluvium and Starlight Formation include MP-1, MP-2, MP-3, and MP-9 near the treatment system, three remediation extraction wells, and downgradient wells MW-118D and MW-120D.

Hydraulic conductivity estimates from slug tests conducted in these wells ranged from 0.3 to 20.5 feet per day (feet/day). The highest hydraulic conductivity was recorded at RW-15, which has historically been the most productive of the remedy wells. Hydraulic conductivity at nearby wells RW-17, MP-1, and RW-16 were estimated at 5.0, 9.7, and 6.2 feet/day, respectively. The hydraulic conductivity on the west and east sides of the site were estimated to be lower than in the central portion where RW-15 is located. The hydraulic conductivity at MP-2—the westernmost well screened within the alluvium that was tested—was estimated to be 0.3 feet/day, which was consistent with historically low yields from the colocated RW-3. On the eastern side of the canyon, MP-3 was estimated to have a hydraulic conductivity of 0.6 feet/day. Of the seven wells screened exclusively within the Starlight Formation, low hydraulic conductivity of 0.004 to 0.3 feet/day, with an average of 0.18 feet/day, was observed at all six locations.

Inflows to the aquifer system underlying the FHML area are direct recharge from precipitation and seepage from Fort Hall Canyon Creek. Average precipitation recorded at the landfill weather station was approximately 12 inches per year throughout the last six years of records. Welhan (1996) estimated average annual precipitation at Fort Hall Canyon to be 20.4 inches per year. Maxim (2000b) observed that nearly all the surface water flows within Fort Hall Canyon Creek seeped into the underlying aquifer upgradient of the mouth of the Fort Hall Canyon upgradient of the remedy wells and Cell 1 waste area. As noted, observation of surface water discharge via Fort Hall Canyon Creek downgradient of the remediation system is rare; however, this discharge occurred as recently as 2023. Welhan (1996) estimated that evapotranspiration loss was approximately 80% of precipitation in nearby watersheds, with evapotranspiration loss assumed to be inversely proportional to altitude. Outflows from the aquifer system underlying the FHML and through the mouth of Fort Hall Canyon are primarily groundwater flux as remedial pumping is injected back into the aquifer and, as noted above, surface water discharge is rare.

Rainfall totals recorded at the weather station located onsite were as follows:

- 2017: 15.3 inches
- 2018: 11.3 inches
- 2019: 14.6 inches
- 2020: 11.1 inches
- 2021: 10.6 inches
- 2022: 11.8 inches
- 2023: 12.5 inches

If 80% of this rainfall evapotranspires (Welhan 1996) and surface runoff downstream of the pumping and treat system is rare, approximately 2.2 to 3 inches per year would be estimated to have recharged the groundwater over the past 6 full years in the area upgradient of the pump-and-treat system.

A portion of the recharge is concentrated along the creek bed where surface water seepage is known to occur. Maxim (2000b) measured this seepage rate to range between 0.4 and 34.6 gallons per minute (gpm) for the period between April 5 and December 7, 1999. Creek seepage was measured again between June 17 and July 22, 2021, yielding a value of 4.6 gpm. As noted above, this was a dry period, with only one storm producing greater than 0.1 inches of rain. That storm occurred between July 21 and 22, totaling 0.21 inches, and it produced a peak seepage rate of 419 gpm and a total of approximately 10,000 gallons of infiltrated water to the creek over a 2-hour period. Precipitation continues to be collected to better understand this relationship.

Observations of borings in MW-1902, MW-1903, MW-122, and MW-123 showing thin and infrequent saturated intervals in the Starlight Formation are separated by dry rhyolitic tuff and loose-to-cohesive, dry-to-moist, sandy gravel and gravelly sand with silt and some clay. Similar lithology was observed in other borings completed into the Starlight Formation, which indicates that the vertical downward movement of groundwater near the remedy wells is limited by the lithology of the Starlight Formation. Therefore, groundwater flow near the RWs is predominately in the higher transmissivity alluvium and shallow Starlight Formation. During the spring, when recharge to the Starlight Formation from upgradient sources increases, the dry-to-moist sandy gravel and gravelly sand with silt units may become saturated, thereby increasing flow. At the same time, flow in the overlying alluvium and shallow Starlight will also increase.

Groundwater flowing through the mouth of Fort Hall Canyon discharges to the PVA. The PVA comprises northern, eastern, and southern subaquifers and is the sole source of drinking water for the communities of Pocatello and Chubbuck. In the southern portion of the PVA, wells have high yields because they are completed in coarse, clean, upper gravels at depths less than 100 to 150 feet bgs. The transmissivity of the upper gravels was estimated at approximately 10 square feet per second, with aquifer storage estimated at 0.005 (unitless), based on constant discharge pumping tests of municipal wells (CH2M HILL 1994).

In spring 2023, the quantity of precipitation on record was high. This could be one of multiple factors explaining some of the recent changes in groundwater parameters and COC concentrations. The total calendar year precipitation observed at the National Oceanic and Atmospheric Administration station located at the Pocatello Airport was 14.34 inches. This is the highest annual total precipitation observed for the past 5 years, exceeding the next highest year by more than 2 inches of precipitation (Figure 1-5).

1.3.4 Nature and Extent of Chemicals of Concern

As discussed in Section 1.3.1.3, the nature and extent of groundwater contamination are monitored via an extensive well network, which includes multiple well groups (shown in Figures 1-3 and 1-4). The primary COCs at the FHML and associated groundwater plume are VOCs, specifically PCE and TCE. The following sections briefly summarize the nature and extent of these COCs and select inorganic parameters in each well network. More detailed summaries and the

extent of various contaminants, including metals, semivolatile organic compounds (SVOCs), pesticides, herbicides, polychlorinated biphenyls (PCBs), and dioxins/furans throughout FHML and the surrounding area can be found in recent CDM Smith monitoring reports (e.g., CDM Smith 2023b).

1.3.4.1 Cell 1 Source and Offsite Plume

PCE and TCE are frequently detected throughout the Cell 1 source area and offsite plume. Recent sampling results are summarized briefly below and are generally representative of site conditions over the past 5 years:

- In Cell 1 monitoring wells, PCE and TCE are detected at higher concentrations than elsewhere within or downgradient of FHML, with TCE commonly detected above 100 micrograms per liter ($\mu\text{g}/\text{L}$) in some wells. In sampling events over the last 5 years, TCE and PCE have been detected in all sampled Cell 1 MWs except for MW-111S and FW-1. PCE and TCE have exceeded the U.S. Environmental Protection Agency (EPA) maximum contaminant level (MCL) of 5 $\mu\text{g}/\text{L}$ in most monitoring wells (except for MW-1 [PCE], MW-102S [PCE/TCE], MW-110D [PCE], MW-111D [PCE], and MW-121[PCE/TCE]).
- In remediation system extraction wells, TCE and PCE have frequently exceeded the MCLs.
- In offsite monitoring wells, TCE frequently exceeds the MCL in MW-103S and MW-116S. PCE has exceeded the MCL in MW-103S and MW-116S.
- In domestic wells in the PVA, PCE and TCE are detected frequently and have exceeded the MCLs in the following wells: RW-2076F, RW-2140H, RW-2151H (TCE only), RW-2172H, RW-2203H, RW-2237H (TCE only), RW-7677P (TCE only), and RW-8030P (TCE only).
- In City municipal supply wells #14 and #33, PCE and TCE have been detected; however, there has been no MCL exceedance since May 2018 (TCE in municipal supply well #33).

Reductive daughter products of PCE and TCE, such as cis-1,2-dichloroethene (cis-1,2-DCE), trans-1,2-dichloroethene (trans-1,2-DCE), and vinyl chloride (VC), were also frequently detected, with some detections exceeding the MCLs for drinking water in the Cell 1 monitoring area.

Inorganic parameters are frequently detected throughout Cell 1 and the offsite plume when analyzed. Inorganic parameters are not analyzed in these wells for every sampling event. Recent results are as follows:

- Arsenic and barium have frequently exceeded MCLs, with the highest concentrations occurring in MW-111S/D.
- Mercury has exceeded the MCL in recent sampling (2018, 2019, and 2021). However, mercury has not been detected in Cell 1 monitoring wells since 2021. Cyanide and sulfide have been detected below the MCL in several wells.
- Elevated levels of major and trace elements (iron, manganese, barium, arsenic, chromium, cobalt, and/or nickel) have also been observed throughout the Cell 1 monitoring network.

- In offsite and domestic wells, antimony, arsenic, barium, beryllium, chromium, cobalt, copper, lead, nickel, vanadium, and zinc have recently been detected, although no concentrations have exceeded the MCL.

1.3.4.2 Cell 2

From 2020 to fall 2023, PCE and TCE were detected at low concentrations in Cell 2 compliance monitoring well MW-13. Results were below 1 µg/L and J-flagged (estimated). Other VOCs have also been detected at low concentrations in this well, MW-9, and MW-12. MCL exceedances for metals are rare and have not occurred in recent sampling.

1.3.4.3 Cell 4

From 2020 to fall 2023, several VOCs were detected in Cell 4 compliance monitoring wells. TCE was detected at low concentrations in MW-3A and MW-4A in 2020 and 2021, respectively. Several other VOCs were also detected in MW-3A in 2021. In new compliance monitoring well MW-5AR, carbon disulfide was detected in 2021 and 2022 and toluene was detected in 2021. VOCs are regularly detected at low concentrations in MW-4, which is not a compliance well. No metals have recently exceeded MCLs in the current Cell 4 network.

1.3.5 Fate and Transport of Chlorinated Ethenes

Natural biodegradation of chlorinated ethenes such as PCE and TCE is well established in peer-reviewed literature and is shown to occur most efficiently under anaerobic (without oxygen) conditions. PCE is considered recalcitrant (i.e., it does not degrade biologically) under aerobic conditions, and TCE degradation is very slow. This is part of the reason these chemicals persist in aerobic aquifers and tend to form relatively large plumes in transmissive aquifers.

Under anaerobic conditions, however, PCE and TCE can undergo biotic transformation via anaerobic reductive dechlorination, where bacteria use them as alternate electron acceptors in the absence of oxygen. During anaerobic dechlorination, sequential transformation most commonly occurs from PCE to TCE to cis-1,2-DCE to VC to ethene (**Figure 1-6**). At each step in this process, the organic molecule loses a chloride anion. A less common pathway includes the generation of 1,1-DCE or 1,2-trans-DCE in addition to 1,2-cis-DCE. Ethene is commonly transformed to ethane after reductive dechlorination.

In addition to the anaerobic pathway, other degradation mechanisms for the lower chlorinated ethenes and ethanes, such as cis-1,2-DCE and VC, include anaerobic oxidation coupled with sulfate or iron reduction and aerobic oxidation (i.e., use as a food source for aerobic microorganisms), generating carbon dioxide and water. These alternate degradation mechanisms are important when there is significant sulfate or iron available anaerobically, in redox transition zones where anaerobic groundwater comes into contact with aerobic groundwater in the downgradient/distal plumes, or there is periodic infiltration of aerobic precipitation during rain events. Areas where these alternate degradation mechanisms occur can be either downgradient or cross-gradient from the anaerobic source zone or below the anaerobic source zone if there is a vertical gradient resulting in vertical mixing with aerobic groundwater.

In addition to the chlorinated ethenes, reductive daughter products ethene and ethane can be oxidized (i.e., used as food sources) by aerobic and/or anaerobic sulfate-reducing or iron-

reducing microorganisms. Under conditions in which reductive daughter products are directly oxidized, a complete mass balance to cis-1,2-DCE, VC, ethene, and/or ethane is not observed.

1.3.6 Mobilization of Redox-Sensitive Metals

Redox processes (oxidation and reduction) control the chemical speciation and subsequent mobility of many major and trace elements, including arsenic, barium, chromium, copper, iron, manganese, mercury, molybdenum, selenium, sulfur, and vanadium. The mobility of other redox-sensitive elements (e.g., sulfate) can be indirectly affected by redox transformations of organic matter and minerals, particularly iron and manganese oxyhydroxides, clays, and sulfur minerals. The oxidized form of iron (Fe[III]) is insoluble in near-neutral pH environments, and trace elements strongly sorb to Fe(III) (i.e., ferrous iron) minerals. Under reducing conditions, Fe(III) can be reduced to Fe(II), thereby dissolving iron minerals and releasing trace elements. Barium, as the insoluble salt barium sulfate (BaSO_4), can be mobilized under reducing conditions as sulfate is reduced to sulfide. Furthermore, many redox-sensitive elements are more mobile in their reduced speciation state (e.g., arsenic As[III] is more mobile than As[V]).

In environments with sources of carbon (e.g., landfill leachate), redox conditions become reduced and anaerobic reductive dechlorination is observed, resulting in increased concentrations of redox-sensitive major and trace elements. Conversely, where redox conditions become more oxidized, the redox-sensitive major and trace element concentrations are reduced. For example, arsenic and ferrous iron are typically observed in anaerobic groundwater environments (e.g., anaerobic areas impacted by landfill leachate) and concentrations are quickly reduced once oxidized (i.e., aerobic) conditions are reestablished downgradient from the landfill leachate discharge area.

1.3.7 Geochemical Conditions in the Cell 1 Source Area and Offsite Plume

The following geochemical parameters have been collected from wells in the Cell 1 source area and offsite plume: dissolved gases (methane, ethane, ethene), sulfate, alkalinity, total organic carbon (TOC), field parameters (dissolved oxygen [DO], pH, and oxidation-reduction potential [ORP]), and ferrous iron. These geochemical parameters and the concentrations of chlorinated ethenes (PCE, TCE, cis-1,2-DCE, and VC) were used in a principal component analysis (PCA). PCA enables the reduction of large data sets by revealing patterns in the data through identifying the principal components of the data. Only wells that have results for each of these geochemical parameters can be used in the PCA; therefore, only a subset of onsite and offsite wells were used in the analysis.

The PCA revealed groundwater sampled from monitoring wells at the site grouped in four distinct geochemical conditions:

- Methanogenic conditions were identified in the Cell 1 source area on the west side of the remediation system (MW-111S/D, MW-113S/D, and MW-105S).
- Iron- and sulfate-reducing conditions were identified in the Cell 1 source area near the remediation system (MW-119S, MW-120S/D, MW-110S, MW-104S/D, MW-118D, RW-3, RW-4, RW-9R, RW-15, and RW-17).

- Aerobic conditions were identified on the east side of the remediation system (MW-101S, MW-112M/D, MW-109S/D, RW-10, MW-119D) and in the PVA (MW-103 and RW-8030P).
- Aerobic conditions and low concentrations of chlorinated ethenes were identified in the PVA (RW-2203H, PA-1, PA-3, MW-38, RW7677P, and RW-2140H) and upgradient of the treatment system (MW-110D and MW-7).

1.3.8 Remediation System

The purpose of the remediation system is to extract groundwater contaminated by chemicals leaching from the old, unlined landfill area (Cell 1), remove VOCs, and then reinject the treated groundwater into the aquifer. The CO requires that the system remain in operation until otherwise directed by IDEQ. The system includes the following major components:

- A network of groundwater remediation wells currently consists of six pumping wells (RW-4, RW-5, RW-9R [replaced RW-9], RW-10, RW-15, and RW-17) and four non-pumping wells (RW-1, RW-2, RW-3, and RW-16). Each operating well is equipped with a submersible pump and a pressure transducer set above the pump. The pressure transducer monitors the water level in the well and allows the pump controller to tell the pump to speed up or slow down to maintain a water level setpoint. Maxim installed the first seven wells with the intent of intercepting as much of the contaminated groundwater as possible before it flowed through the mouth of the Fort Hall Mine Canyon and into the PVA. RW-15 and RW-17 were installed in 2012 to improve system performance. In 2018, RW-1 was taken offline, and in 2020, RW-2 and RW-3 were taken offline. The pumps in these wells were also removed. RW-16 was never connected to the treatment system.
- The monitoring well network includes wells within the groundwater remediation area located both upgradient and downgradient to the area. The network allows for evaluation of the system performance.
- Individual conveyance piping from the remediation wells directs water back to the remediation shed.
- A climate-controlled remediation shed contains all the ex situ treatment equipment.
- The influent manifold with pressure gauges, flowmeters, and sample ports allows for collecting process data and water samples from each of the remediation wells.
- A shallow tray air stripper volatilizes dissolved VOCs and discharges them to the atmosphere.
- A metering pump pulls antiscalant from a drum and injects it into the water to reduce inorganic buildup in the air stripper and injection wells.
- The shed houses the system's power distribution, control panels, variable frequency drives for each RW pump, and other associated equipment.
- Two injection wells and an overflow evaporation pond are downgradient of the remediation zone.

Periodic monitoring of the remediation wells and the air stripper influent is necessary to understand trends in VOC concentrations and the overall loading into the remediation system, respectively. Samples must be collected quarterly from the air stripper effluent to confirm that the air stripper is removing VOCs from the extracted groundwater prior to injection and that the effluent injection remains compliant with the injection permit.

The Injection Well Permit No. 29W-006-001 for INJ-1 and 29W-006-002 for INJ-1R, expiring March 15, 2025, specifies the following:

- Violating the water quality standards stated in Idaho Administrative Procedures Act (IDAPA) 37.03.03.070.05, degrading the quality of the groundwater, or impacting a beneficial use of the groundwater resource through the use of this injection well is prohibited and cause for cancellation of this permit.
- If the Idaho Department of Water Resources (IDWR) suspects existing or future points of diversion for beneficial use to be contaminated by injection activities at this well, IDWR will require injection activities at this well to cease immediately. The injection well owner is responsible for providing burden of proof that injection activities at this well are not contaminating existing or future points of diversion.

Currently, treated groundwater is only being injected via INJ-1R.

The IDAPA regulation specified in the permit, Class V Shallow Injection Well Requirements, includes the following general requirements:

- Compliance with all groundwater quality standards for injected water.
- No impact relative to the temperature, color, odor, turbidity, conductivity, pH, or other characteristics that may result in a reduction of suitability for beneficial uses of groundwater.
- Routine monitoring of the injection flow rate, volume, and injection pressure.

Given these general requirements, the air stripper effluent is sampled quarterly for site COCs and semiannually for other chemicals to compare against groundwater quality standards, as outlined in Worksheet #20 of the QAPP (CDM Smith 2021b).

Section 2

Field Activities

This section describes field activities that were completed at the site in fall 2023, including groundwater sampling and remediation system O&M. Fall groundwater sampling was performed in October. Six-month pilot study monitoring was also conducted in October 2023. Data and interpretation from these wells will be presented under a separate cover.

2.1 Groundwater Sampling

During the fall 2023 monitoring event, groundwater samples were collected from 50 locations from the Cell 1, Cell 2, Cell 4, and offsite monitoring well networks; the remediation extraction wells; and the air stripper effluent (INJ-1R). **Figure 2-1** presents the fall 2023 sample locations, and **Table 2-1** provides a summary of samples collected. **Table 2-2** presents a summary of well construction information. The fall 2023 sampling activities were consistent with the QAPP (CDM Smith 2021b) and sampling plan (**Appendix A**), except as described in **Section 2.1.6**.

Appendix B contains the field documentation for the fall 2023 groundwater monitoring events, including equipment calibration forms, groundwater purge forms, synoptic water level forms, and the field logbook. The following sections describe groundwater sampling in further detail.

2.1.1 Private Property Access

Consent to access and collect samples or water levels from groundwater wells on private property was obtained from property owners prior to the fall 2023 sampling event via signed consent forms or verbal agreement. Unrestricted access was granted previously to the following wells:

- MW-103S/D
- MW-106S/D
- MW-115S/D

Restricted access to MW-116S/D is granted by arranging an appointment with the property owner. During the fall 2023 event, CDM Smith was able to make an appointment to access and sample the wells.

2.1.2 Water Level Measurement

Synoptic water levels were collected following procedures outlined in Standard Operating Procedure (SOP) 1-6, “Groundwater Level Measurement” (CDM Smith 2021b). Manual water level measurements were recorded for the wells at the landmark indicated on the casing (or, in the absence of a mark, the northern edge) using electronic water level meters. Water levels from domestic wells are not collected because of well construction. Domestic wells are closed, and water is only accessible by a spigot at the well head.

On October 9, 2023, water levels were measured while the treatment system was operational at 52 wells, as specified in **Table 2-1**.

2.1.3 Groundwater Sampling Procedures

2.1.3.1 Monitoring Wells

All monitoring wells and offline remediation system wells RW-1, RW-2, and RW-3 were sampled according to the procedures outlined in SOP 1-12, “Low-Stress (Low-Flow) Groundwater Sampling” (CDM Smith 2021b). The bladder pump was positioned within the screened interval and set to pump at flow rates of 50 to 500 milliliters per minute. Minimal drawdown and/or stabilized drawdown was used to ensure that the water to be sampled was representative of the formation surrounding the screened interval and not the stagnant water column. Purge volumes were calculated based on water column height, inner diameter of tubing and inner diameter of casing. During this event, tubing and casing inner diameters were confirmed and, in some cases, adjusted for accuracy. Water quality parameters were monitored continuously using a flow-through cell, and when stabilization was achieved, a groundwater sample was collected.

2.1.3.2 Remediation System Wells and Effluent

The online remediation system wells were sampled according to the procedures outlined in SOP 1-9, “Tap Water Sampling” (CDM Smith 2021b). Because extraction wells cycle on and off at varying intervals and the influent and effluent production are continuous, a set purge volume prior to sampling is not necessary. All remediation system well grab samples were collected from taps within the treatment building.

2.1.3.3 Passive Sampling Comparability Study

During the fall 2023 onsite sampling event, samples were collected using both HydraSleeve and low-flow sampling methods for a subset of monitoring wells. Eleven monitoring wells were sampled for both low-flow and HydraSleeve passive sampling comparison in fall 2023. Samples collected using passive sampling were analyzed for VOCs. **Appendix C-1** discusses the results of and recommendations from this sampling.

2.1.4 Sample Analysis

Samples were analyzed according to the sampling plan in **Appendix A** and as outlined subsequently. Water quality parameters were collected at each location prior to collecting groundwater samples using a YSI Pro Digital Sampling System (ProDDS) or YSI ProPlus multiparameter meter. Turbidity was measured using a stand-alone HACH turbidity meter. Water quality parameters included the following:

- DO
- ORP
- pH
- Turbidity
- Temperature

- Specific conductance

2.1.4.1 Cell 1 Source and Offsite Plume

Cell 1 and offsite monitoring well samples were analyzed for VOCs by EPA Method 8260D. Select wells were analyzed for dissolved metals and/or total metals by EPA Method 6020B/6010C, anions by EPA Method 9056A, dissolved gases by Method RSK-175, TOC by EPA Method 9060A, ferrous iron by HACH Method 8146, compound specific isotope analysis, and microbial parameters, as shown in **Table 2-1**, consistent with the Pilot Study Work Plan (CDM Smith 2023c).

2.1.4.2 Remediation System

All sampled online and offline remediation system wells were analyzed for VOCs by EPA Method 8260D. Remediation system well RW-1 was additionally analyzed for TOC by EPA Method 9060A and ferrous iron by HACH Method 8146. RW-2 was also analyzed for dissolved and total metals by EPA Method 6020B/6010C, anions by EPA Method 9056A, TOC by EPA Method 9060A, and ferrous iron by HACH Method 8146.

The groundwater treatment system effluent (INJ-1R) compliance samples were analyzed for the following during the fall 2023 quarterly permit monitoring:

- VOCs by EPA Methods 8260D and 8011
- Total metals by EPA Method 6020B/6010C
- SVOCs by EPA Methods 8270E and 8270E selected ion monitoring (SIM)
- Chlorinated pesticides by EPA Method 8081B
- Organophosphorus pesticides by EPA Method 8141A
- Chlorinated herbicides by EPA Methods 8321B
- PCBs by EPA Method 8082A
- Dioxin/furans by EPA Method 8290
- Mercury by EPA Method 7470A
- Cyanide by EPA Method SM4500-CN-E
- Sulfide by EPA Method SM4500-S-2

During the summer 2023 quarterly permit monitoring, INJ-1R was analyzed for only VOCs (8260D).

2.1.4.3 Cell 2

Samples collected from Cell 2 were analyzed for the following:

- VOCs by EPA Methods 8260D and 8011

- Total metals by EPA Method 6020A/6010C
- Sulfide by EPA Method SM4500-S-2

2.1.4.4 Cell 4

Samples collected from Cell 4 were analyzed for the following:

- VOCs by EPA Methods 8260D and 8011
- Total metals by EPA Method 6020B/6010C

All groundwater analytical samples were submitted to TestAmerica (Denver, Colorado) for analysis.

Field quality control (QC) samples, including trip blanks, rinsate blanks, field duplicates, and extra volume for matrix spike/matrix spike duplicate (MS/MSD) samples, were collected. QC sample results were evaluated as part of the data validation effort and are discussed in the data usability assessment in **Section 3.1**.

2.1.5 Decontamination and Investigation-Derived Waste

All nondedicated sampling equipment (e.g., bladder pump equipment, water level meters) were decontaminated following the procedure outlined in SOP 4-5, “Field Equipment Decontamination at Nonradioactive Sites” (CDM Smith 2021b). A triple-wash system was used, following decontamination procedures for groundwater sampling equipment. The first wash used potable water and laboratory-grade detergent, the second wash used potable water, and the third wash used distilled water for rinsing. Before use, reuse, and at the end of the sampling event, all bladder pump equipment was disassembled, scrubbed, and decontaminated using this triple-wash system. Decontamination water and purge water from monitoring well sampling were contained and disposed of onsite at the Cell 2 leachate pond. Disposable personal protective equipment was disposed of onsite at the landfill.

2.1.6 Deviations

Except where noted below, sampling did not deviate from the sampling plan (**Appendix A**).

Section 3.1 provides information on any analytical data quality deviations.

2.1.6.1 Synoptic Water Level Measurement

No deviations in the synoptic water level event were made.

2.1.6.2 Cell 1 and Offsite Monitoring Wells

MW-122 was not sampled because the well had insufficient water level for sample collection. RW-16 was not initially included in the sampling plan; however, per the passive sampling memo (**Appendix C-1**), it was added for the side-by-side comparison of the low-flow and passive sampling methods. MW-117R was initially planned for low-flow sampling but because of a lack of tubing for a portable pump, passive sampling was used to sample the well instead.

2.1.6.3 Remediation System Wells and Effluent

No deviations in the sampling plan for the remediation wells and effluent.

2.1.6.4 Cell 2 and 4 Monitoring Wells

No deviations in the sampling plan for Cell 2 and 4 monitoring wells.

2.2 Remediation System Maintenance Activities

Remediation system maintenance activities were conducted during and prior to the current reporting period to support O&M of the remediation system. The following sections describe these field activities.

2.2.1 Remediation Well Rehabilitation

No record exists of rehabilitation of the remediation system wells prior to 2020. Based on an evaluation of remediation well performance and potential for fouling, a rehabilitation program was implemented in 2020 to optimize the performance of the extraction wells (CDM Smith 2020 and 2021a). Remediation well performance continues to be monitored to evaluate future well rehabilitation needs. No rehabilitation was performed during this reporting period (August 4, 2023, through December 7, 2023).

2.2.2 Remediation System Operation and Maintenance

The following activities describe and list the frequency of system O&M activities.

2.2.2.1 Operations

Daily inspection of mechanical and electrical equipment at the remediation shed was generally conducted daily by Bannock County staff. The following items were verified during the inspections:

- Water pipes inside the building were not leaking.
- The metering system was operational.
- Recovery well pumps were cycling as expected.
- The air stripper blower was operating.

Inspection of mechanical and electrical equipment at the remediation shed was generally conducted weekly by Bannock County staff. The following items were verified or recorded during the inspections:

- Operating pressure of the air stripper.
- Flow totals from each of the individual flowmeters and the system totalizer.
- Adequate antiscalant in the metering pump drum.

2.2.2.2 Maintenance

Each recovery well-level transducer was checked for proper pumping operations monthly. Each level transducer self-adjusts for variations in atmospheric pressure through the desiccant tube. The desiccant protects the transducer's electrical elements from moisture and if nearly exhausted must be replaced. Failure to do so will degrade the quality of the level data provided by the

transducer and reduce the functionality of the associated recovery well pump. When CDM Smith staff visited the site, they inspected the desiccant within the tubes (it changes color when exhausted).

- Annual air stripper blower maintenance was performed by an approved contractor from October 31 to November 15, 2023. During this time frame, the remediation system was turned off.

2.2.2.3 System Upgrades and Repairs

On October 12, 2023, the RW-17 flowmeter was determined to be malfunctioning and was subsequently replaced on November 16, 2023.

2.3 Leachate Sampling and Landfill Gas Well Water Level Measurements

The pipe discharging into Cell 4 leachate pond was not sampled during the fall 2023 event. Because the discharge pipe to the Cell 2 leachate pond was inaccessible, Cell 2 leachate was not sampled. Landfill gas well water levels were measured at locations shown in **Figure 2-2**. The water level measurements for the landfill gas wells are presented in **Table 2-3**. These results will be discussed further in a forthcoming update to the Seepage Evaluation Report.

Section 3

Groundwater Monitoring Results

This section presents the groundwater monitoring results from the August 2023 remediation system effluent and fall 2023 sampling events. **Figure 3-1** presents the updated potentiometric surface map, and **Table 3-1** presents the corresponding water level measurement data.

Figures 3-2 through 3-6 and **Tables 3-2 through 3-8** present groundwater sampling results and updated treatment system monitoring data. **Appendix C-2** contains all groundwater analytical results.

3.1 Groundwater Data Usability Assessment

Data validation was performed in accordance with the analytical methods, *National Functional Guidelines for Inorganic Superfund Methods Data Review* (EPA 2020a), *National Functional Guidelines for Organic Superfund Methods Data Review* (EPA 2020b), and *National Functional Guidelines for High-Resolution Superfund Methods Data Review* (EPA 2020c), as applicable.

The review included holding times, sample preparation blanks (method, equipment, source, trip), duplicates (field), surrogate compound recovery, MS/MSDs, laboratory control sample/laboratory control sample duplicates (LCS/LCSDs), interferences, reporting limits (RLs), and compound identification and quantification. The review for the 2,3,7,8-tetrachloro-p-dibenzodioxin (2,3,7,8-TCDD) included initial calibration and continuing calibration data.

CDM Smith validated laboratory analytical data using the EQuIS Data Quality Module for VOCs, SVOCs, organochlorine pesticides, PCBs, organophosphorus compounds, chlorinated herbicides, dioxin/furans (2,3,7,8-TCDD), total metals, total cyanide, and total sulfide. **Appendix D** provides the validation narrative, and **Appendix E** includes the final laboratory data packages for each laboratory sample delivery group. All data were received from the laboratory in final form, and validation was performed on the final data.

For the August 2023 effluent and October 2023 semiannual sampling events, including October sampling of the treatment system, all data are suitable for their intended use with the following exceptions:

- Chloride and bromide results for samples MW-124-2023102, MW-124Q-20231012, and MW-125-20231012 were qualified “J-” or rejected “R” for being analyzed at dilution past the holding time.
- The nitrite and nitrate analyses for samples MW-119D-20231010, MW-120D-20231010, MW-118D-20231010, MW-120S-20231010, MW-119S-20231010, MP-2-20231012, MW-124-20231012, MW-124-Q-20231012, MW-125-20231012, and RW-2-20231014 were past the holding time. The detected nitrate results were qualified “J-” and the undetected nitrite results were rejected (qualified “R”).

- The semivolatiles, SIM benzo(a)pyrene, organo-chlorine pesticides, organophosphorus compounds, and sulfide analyses for samples INJ-1R-2023103, MW-8-2023103, and MW-9-2023103 were extracted past the holding time. Detections were qualified “J-” and nondetections were qualified “R.”
- The sulfide analyses for samples INJ-1R-2023103, MW-8-2023103, and MW-9-2023103 were run past the holding time. Sulfide results for these samples were nondetections that were qualified “R.”

Some of the usable results should be used with caution, as noted by the “J/J-/UJ” qualifiers applied during the data validation process, as discussed in **Appendix D**.

3.1.1 Precision

Precision was assessed by comparing the relative percent differences (RPDs) or absolute differences for laboratory duplicate samples, field duplicate samples, MS/MSD analyses, and LCS/LCSD analyses. Laboratory in-house limits were used for laboratory duplicate samples, LCS/LCSD, and MS/MSD duplicate analyses. An RPD field duplicate criterion of 30% was used for field duplicates. For field duplicates in which results were greater than five times the level of quantification, the RPD was calculated and compared with the 30% precision criterion. Where results were less than five times the RL, the absolute difference was calculated and compared with a precision criterion of less than or equal to the RL. **Table D-3 (Appendix D)** presents comparisons of results for primary samples and associated field duplicates. All duplicate RPDs and absolute differences met their respective control limits, as noted in **Appendix D**.

3.1.2 Accuracy

Accuracy was assessed with percent recoveries in MS/MSD, LCS/LCSD, surrogate recoveries, and calibration data (2,3,7,8-TCDD only). Laboratory in-house control limits and EPA Method 8290A were used for evaluation of these parameters. All percent recoveries in LCS/LCSDs met the control limit criteria, with the exceptions noted in **Appendix D**; exceptions that required qualification of data (“J,” “J-,” or “UJ”) are noted in **Appendix D**. All percent recoveries in MS/MSDs and LCS/LCSDs met the control limit criteria, when applicable, with the exceptions noted in **Appendix D**; exceptions that required qualification of data (“J,” “J-,” or “UJ”) are noted in **Appendix D**. All surrogate recoveries met the control limit criteria. All 2,3,7,8-TCDD calibration data met the control limit. Selected semivolatile compounds and metals data were qualified as not detected at the reporting limit because of blank contamination, as noted in **Appendix D**.

3.1.3 Comparability

Comparability from one sampling event to another is achieved by structuring the field sampling program and protocol for sample collection and analyses. CDM Smith follows technical SOPs to ensure consistent sampling techniques. In addition, EPA-approved analytical methods and RLs are defined and used to ensure comparability of data.

All data included in this report have been validated and are considered acceptable for use, except for the rejected data previously discussed. **Appendix D** provides the full validation narrative and results.

3.1.4 Completeness

An analytical completeness goal of 90% for each analytical group was used to determine completeness. Analytical completeness was evaluated for each analytical group through a comparison of the number of nonrejected data to the number of requested analyses. For the fall 2023 sampling event, all analyses for field samples that were submitted to the laboratory were successfully analyzed, except for the rejected data previously discussed. A total of 14 wet chemistry results were rejected and a total of 377 organic results were rejected. A total of 79 results were obtained for the wet chemistry analyses (anions, cyanide, sulfide, and TOC), which yields a completeness value of 82.3%, which is below the 90% criterion. A total of 5,942 results were obtained for the organic analyses, which yields a completeness value of 93.7%, which meets the 90% criterion.

3.1.5 Sensitivity

The RLs achieved for all samples were adequate to meet the DQOs.

3.1.6 Deviations

Shipping Deviations

- Ten VOC samples and two trip blanks were received by the laboratory with cooler temperatures above the recommended limit, as noted in **Appendix D**. All VOC results for these samples were qualified estimated (“J/UJ”).

Analysis Deviations

- Eurofins TestAmerica Denver no longer analyzes for p-phenylenediamine and a, a-dimethyl phenethylamine as target analytes in the semivolatiles analyses, which means these compounds are not included in the calibration or included in matrix and LCS spikes. They now analyze for them as targeted tentatively identified compounds. Because they have analyzed these two compounds previously, they have information regarding what their retention time would be in their semivolatiles analyses. As a targeted tentatively identified compound, they could then compare spectra for compounds that met the retention time criteria of these two compounds, if present, to determine if these compounds were detected. These two compounds were reported as not detected in all the samples analyzed for SVOCs.
- A subset of samples exceeded analysis hold time for various analyses (Section 3.1).

Deviations will be addressed in planning for upcoming sampling events to reduce the likelihood of similar deviations in the future. An approach could include shipping samples to the laboratory more frequently to reduce the likelihood of hold time exceedances.

3.2 Groundwater Elevations

During the fall 2023 sampling event, synoptic water levels were collected from monitoring wells following procedures outlined in SOP 1-6, “Groundwater Level Measurement” (CDM Smith 2021b). **Table 3-1** presents the water levels. Using data collected on October 9, 2023, **Figure 3-1**

shows the potentiometric surface map, representing water levels while the treatment system was in operation.

3.2.1 Horizontal Gradient Evaluation

Groundwater flows in a northeastern direction through the valley of Fort Hall Mine Canyon, with a horizontal gradient of approximately 0.14 foot per foot (foot/foot) between MW-4A (the furthest upgradient well with data) and MW-102S (the furthest downgradient well with data within the Fort Hall Mine Canyon), based on October 9, 2023, water level elevation data.

3.2.2 Vertical Gradient Evaluation

The fall 2023 synoptic water level survey completed on October 9, 2023, included several sets of nested monitoring wells while the remediation system was operational. **Table 3-1** includes calculated vertical gradients for this data set. A review of these calculated values shows the following:

- Downward vertical gradients were observed at most well pairs, ranging from 0.04 to 0.40 feet/foot, with the strongest downward vertical gradient observed at MW-109S/D. In each of these instances, the shallower well is screened exclusively within the alluvium and the deeper well is screened within the top of the Starlight Formation.
- Negligible upward vertical gradients were observed for MW-103S/D and MW-113S/D at 0.04 and 0.02 feet/foot, respectively.

3.3 Cell 1 and Offsite Groundwater Results

This section presents analytical results from the fall 2023 groundwater monitoring event. Cell 1 is currently in corrective action monitoring (**Section 4.2**). Fall 2023 samples were analyzed for VOCs and field parameters. **Appendix C-2** contains all fall 2023 groundwater analytical results. Analytical results from the fall 2023 groundwater monitoring event are discussed subsequently. **Appendix F** presents time series plots for all chlorinated ethenes and corresponding field and redox parameter results for each well.

3.3.1 VOCs

Table 3-2 (Cell 1), **Table 3-3** (Offsite), and **Table 3-4** (Remediation Wells) present detections of VOCs screened against the EPA MCLs and Idaho Groundwater Rule (IDGW) primary and secondary standards for drinking water. **Figure 3-2** and **3-3** present results for PCE, TCE, cis-1,2-DCE, and VC.

3.3.1.1 Cell 1 Source and Dissolved Phase Plume

In the Cell 1 monitoring wells, the following was observed:

- PCE detections ranged from 0.98 J µg/L (MW-102S) to 140 µg/L (MW-105D). The MCL and IDGW primary standards (both 5 µg/L) were exceeded in all wells, except MP-2, MW-102S, MW-111D, MW-113D, MW-117R, MW-121, MW-124, MW-125, RW-2, and RW-3.

- TCE detections ranged from 0.3 J $\mu\text{g}/\text{L}$ (MW-113D) to 780 J $\mu\text{g}/\text{L}$ (MW-105D). The MCL and IDGW primary standards (both 5 J $\mu\text{g}/\text{L}$) were exceeded in all Cell 1 monitoring wells, except MW-102S, MW-113D, MW-121, and RW-3.
- Reductive daughter product cis-1,2-DCE detections ranged from 0.32 J $\mu\text{g}/\text{L}$ (MW-112M) to 67 J $\mu\text{g}/\text{L}$ (RW-2). MCL and IDGW primary standards (both 70 J $\mu\text{g}/\text{L}$) were not exceeded in any wells.
- Reductive daughter product trans-1,2-DCE was detected at MW-111D (0.84 J $\mu\text{g}/\text{L}$) and MW-113S (1.2 J $\mu\text{g}/\text{L}$). MCL and IDGW primary standards (both 100 J $\mu\text{g}/\text{L}$) were not exceeded in any wells.
- Reductive daughter product VC detections ranged from 0.96 J $\mu\text{g}/\text{L}$ (MW-105S) to 66 J $\mu\text{g}/\text{L}$ (MW-113S). MCL and IDGW primary standards (both 2 J $\mu\text{g}/\text{L}$) were exceeded in eight wells (MP-1, MW-105D, MW-110S, MW-111D, MW-113S, MW-124, RW-1, and RW-2).
- Benzene standards of 5 J $\mu\text{g}/\text{L}$ were exceeded in MW-111D (10 J $\mu\text{g}/\text{L}$) and MW-113S (6.7 J $\mu\text{g}/\text{L}$).
- Chloroform exceeded its IDGW primary standard of 2 J $\mu\text{g}/\text{L}$ in MW-105D (7.5 J $\mu\text{g}/\text{L}$).

3.3.1.2 Remediation System Extraction Wells

In the remediation system extraction wells, the following was observed:

- PCE detections ranged from 9.5 J $\mu\text{g}/\text{L}$ (RW-9R) to 20 J $\mu\text{g}/\text{L}$ (RW-17). MCL and IDGW primary standards (both 5 J $\mu\text{g}/\text{L}$) were exceeded in all wells.
- TCE detections ranged from 45 J $\mu\text{g}/\text{L}$ (RW-5) to 110 J $\mu\text{g}/\text{L}$ (RW-4). MCL and IDGW primary standards (both 5 J $\mu\text{g}/\text{L}$) were exceeded in all wells.
- cis-1,2-DCE detections ranged from 0.74 J $\mu\text{g}/\text{L}$ (RW-5) to 21 J $\mu\text{g}/\text{L}$ (RW-9R). MCL and IDGW primary standards (both 70 J $\mu\text{g}/\text{L}$) were not exceeded in any wells.
- VC was detected and exceeded the MCL and IDGW primary standards (both 2 J $\mu\text{g}/\text{L}$) in RW-9R (5.7 J $\mu\text{g}/\text{L}$) and RW-15 (2.7 J $\mu\text{g}/\text{L}$).

3.3.1.3 Offsite Monitoring Wells

MW-103S, MW-115S, and MW-116S were the only offsite monitoring wells sampled in October 2023. Results were as follows:

- PCE was detected at 0.77 J $\mu\text{g}/\text{L}$ in MW-103S and 1.3 J $\mu\text{g}/\text{L}$ in MW-116S. PCE was not detected in MW-115S.
- TCE was detected at 3 J $\mu\text{g}/\text{L}$ in MW-103S and 4.4 J $\mu\text{g}/\text{L}$ in MW-115S and did not exceed MCL and IDGW primary standards. TCE was detected at 6.5 J $\mu\text{g}/\text{L}$ in MW-116S and exceeded MCL and IDGW primary standards.
- Reductive daughter product cis-1,2-DCE was detected at 0.51 J $\mu\text{g}/\text{L}$ in MW-116S and not detected in MW-103S or MW-115S.

- No other VOCs were detected in either MW-103S, MW-115S, or MW-116S.

3.3.2 Geochemical Parameters

Table 3-2 (Cell 1), **Table 3-3** (Offsite), and **Table 3-4** (Remediation Wells) present field and geochemical parameter results. As discussed in **Section 1.3.7**, these results are used to assess conditions in groundwater affected by the landfill leachate/waste and to evaluate conditions that facilitate COC degradation.

3.3.2.1 Specific Conductance

Specific conductance was measured at all monitoring wells, and it ranged from 470.9 to 6,576 microSiemens per centimeter ($\mu\text{S}/\text{cm}$). The following was observed:

- Low specific conductance (less than 1,000 $\mu\text{S}/\text{cm}$) was observed at MP-1, MW-101S, MW-102S, MW-103S/D, MW-109S, MW-110D, MW-112M/D, MW-113D, MW-115S, and MW-116S.
- High specific conductance (2,000 to 3,000 $\mu\text{S}/\text{cm}$) was observed in MW-118D, MW-121, and RW-3.
- Very high specific conductance (greater than 3,000 $\mu\text{S}/\text{cm}$) was observed in MW-105S, MW-111D, and MW-113S.
- All other wells had specific conductance in the 1,000 to 2,000 $\mu\text{S}/\text{cm}$ range, consistent with previous specific conductance observations.

3.3.2.2 Carbon

TOC is used as a general indicator of the amount of dissolved carbon within the system. TOC increases when there are inputs, such as leachate or waste originating from Cell 1. Spatial and temporal trends in TOC can be used to assess areas impacted by FHML leachate/waste. Because microbial metabolism results in depletion of DO, the presence of carbon corresponds to the development of more reducing redox conditions. Impacts by these carbon inputs are indicated in areas where TOC concentrations increase from baseline and persist.

Slightly elevated TOC concentration (greater than 10 milligrams per liter [mg/L]) was observed in MW-118D at 14 mg/L. At all other locations where analyzed, TOC ranged from 1.5 to 9.7 mg/L (**Tables 3-2** and **3-4**).

3.3.2.3 Redox Conditions

DO, ORP, sulfate, nitrate, nitrite, ferrous iron, and methane are redox parameters used to evaluate the degree to which reducing conditions are established at a location. Reductive dechlorination of PCE and TCE to cis-1,2-DCE generally occurs under iron-reducing to sulfate-reducing conditions. Complete dechlorination to ethene and ethane typically occurs under sulfate-reducing to methanogenic conditions. Thus, understanding redox conditions provides key insight into the potential for anaerobic reductive dechlorination to occur at a site (Section 1.3.7).

Methanogenic conditions, typically ideal for complete reductive dechlorination of PCE and TCE to ethene or ethane, are indicated by the absence of oxygen, sulfate, and nitrate and the presence of

methane and dissolved iron. In addition, methane production is used as a surrogate for ideal conditions for reductive dechlorination because methanogens and *Dehalococcoides*, one key group of bacteria that reductively dechlorinate TCE to ethene, generally require the same conditions (presence of hydrogen and carbon, reducing conditions, and pH greater than 6) for growth and activity. Therefore, the production of methane often coincides with the production of ethene/ethane from reductive dechlorination.

The following paragraphs summarize the concentrations of various electron acceptors, where analyzed (**Tables 3-2, 3-3, and 3-4**), to assess the redox conditions within FHML groundwater monitoring wells. Additional geochemical evaluation will be included under a separate cover as part of the pilot study evaluation reporting.

Anaerobic Wells: Monitoring wells that are likely anaerobic (DO less than 1.5 mg/L) include MP-2, MW-105S/D, MW-109S, MW-110D, MW-111D, MW-113S, MW-118D, MW-120S/D, MW-121, MW-124, RW-1, RW-2, and RW-16. At these locations, DO ranged from 0.22 to 1.46 mg/L, and the lowest ORP was observed at MW-111D, at -148.2 millivolts (mV). Where redox parameters were analyzed, nitrate ranged from 0.11 J- to 1.8 J- mg/L. Nitrite was not detected at any locations. Lower levels of nitrate, indicative of nitrate-reducing conditions, were observed in MP-2, MW-120D, and MW-124. Additionally, sulfate ranged from 64 to 88 mg/L. Lower levels of sulfate, indicative of sulfate-reducing conditions, were observed at MP-2 (82 mg/L), MW-118D (80 mg/L), MW-120D (74 mg/L), MW-124 (81 mg/L), and RW-2 (64 mg/L). Methane was detected at MP-2, MW-118D, MW-120S, MW-124, and RW-2. These detections ranged from 0.00064 to 0.8 µg/L.

Aerobic/Anaerobic Wells: One monitoring well, MW-125, exhibited DO greater than 1.5 mg/L but exhibited other geochemical characteristics of anaerobic metabolism (e.g., nitrate reduction, sulfate/iron reduction, and methanogenesis). This well is not considered to be strictly anaerobic. At this location, DO was 6.15 mg/L and the ORP was 139 mV. Nitrate was 4.7 J- mg/L, nitrite was not detected, and sulfate was detected at 67 mg/L. Lower levels of nitrate and sulfate can indicate nitrate- and sulfate-reducing conditions, respectively. Methane was analyzed and detected at 0.018 mg/L.

Aerobic Wells: Wells with DO greater than 1.5 mg/L and no redox indicators of anaerobic metabolism (if analyzed) are considered to be aerobic. After fall 2023 sampling, aerobic wells include MP-1, MP-3, MP-4, MW-101S, MW-102S, MW-103S/D, MW-109D, MW-110S, MW-112M/D, MW-113D, MW-115S, MW-116S, MW-117R, MW-119S/D, MW-123, RW-3, RW-4, RW-5, RW-9R, RW-10, RW-15, and RW-17. Of these, only MW-119S/D was analyzed for redox parameters in fall 2023. DO ranged from 1.61 to 11.92 mg/L. DO measurements greater than 10 mg/L are possible where temperature is less than 15 degrees Celsius. The maximum ORP was observed at MW-116S (238.7 mV).

Redox conditions often control the mobility and subsequent concentration in groundwater of redox-sensitive metals such as iron, manganese, and arsenic. Under reducing conditions, these metals are transformed from their oxidized (and immobile) states to their more soluble, reduced forms. In addition, many metals that are not redox-sensitive are sorbed to iron and manganese oxyhydroxides, which may dissolve under reducing conditions, releasing sorbed metals. If site soil/sediments contain redox-sensitive metals, elevated concentrations in groundwater will be

observed in areas with reducing conditions. The following summarizes the concentrations of redox-sensitive metals (**Tables 3-2, 3-3, and 3-4**):

- Arsenic concentration ranged from 0.72 J to 4.0 J $\mu\text{g}/\text{L}$, with no elevated concentrations associated with reducing conditions.
- Chromium concentration ranged from nondetect to 0.59 J $\mu\text{g}/\text{L}$.
- Iron ranged from nondetect to 26 $\mu\text{g}/\text{L}$, except where elevated in MP-2 (780 $\mu\text{g}/\text{L}$), MW-120S (5,300 $\mu\text{g}/\text{L}$), MW-124 (1,100 and 1,200 $\mu\text{g}/\text{L}$), and RW-2 (2,100 $\mu\text{g}/\text{L}$). The iron concentration at these locations exceeded the IDGW secondary standard of 300 $\mu\text{g}/\text{L}$.
- Manganese ranged from 0.00051 J to 5.5 $\mu\text{g}/\text{L}$.

3.3.2.4 pH

pH is a key factor influencing both potential and rates of biotic and abiotic COC degradation reactions, but it can also influence metals mobility. A pH below 6.0 will inhibit the bacteria capable of complete reductive dechlorination to ethene, primarily the *Dehalococcoides* spp., with complete inhibition at pH of 5.5 or less. The pH ranged from 5.11 to 8.19 in Cell 1, offsite groundwater monitoring wells, and remediation extraction wells (**Tables 3-2, 3-3, and 3-4**), indicating that pH is conducive to reductive dechlorination except in MW-118D and MW-119S/D where pH was below 5.5.

3.3.2.5 Chloride and Ethene/Ethane

In addition to being a naturally occurring chemical in groundwater systems, chloride is a byproduct of reductive dechlorination of chlorinated COCs. If reductive dechlorination is occurring and background chloride concentration is relatively low, elevated chloride can be used as an indicator for these degradation reactions.

Relatively high chloride was observed in MW-118D (680 mg/L) and MW-125 (460 J- mg/L). Other locations had chloride concentration that ranged from 150 to 300 J- mg/L (**Tables 3-2 and 3-4**).

Ethene/ethane are the end products of complete reductive dechlorination of PCE, TCE, cis-1,2-DCE, trans-1,2-DCE, and/or VC. Ethene and ethane were analyzed in MP-2, MW-118D, MW-119S/D, MW-120S/D, MW-124, MW-125, and RW-2. Ethene was not detected in any wells and ethane was only detected at MW-124 and MW-125 (**Table 3-2**).

3.4 Performance of the Remediation System

This section describes the performance of the remediation system as it relates to both main performance objectives of the system (Maxim 2001):

- Prevent further downgradient migration of contaminated groundwater through hydraulic containment and extraction of impacted groundwater.
- Treat extracted groundwater prior to reinjection in accordance with the injection permit (IDWR 2023).

The following sections provide additional information regarding the overall operation and functionality of the treatment system as it relates to these performance objectives.

3.4.1 Extraction Well Operations

The current reporting period for remediation system operation is August 4, 2023, through December 7, 2023. All permit compliance items summarized in **Section 1.3.8** were met for this reporting period.

The remediation well system and air stripper are inspected daily when operational and when Bannock County staff are onsite. Observations from daily inspections and weekly flowmeter readings are recorded on weekly operation and maintenance field forms. Flow data from these field forms are then entered into an online database to assess trends, identify abnormal data, and calculate overall groundwater extraction flow rates.

On November 16, 2023, the system was shut down to replace the malfunctioning flowmeter for RW-17. For the duration of the current reporting period, August 4, 2023, through December 7, 2023, the system was not shut down, except for routine maintenance and the activities listed above. **Section 2.2.2** provides more details on specific maintenance and repairs.

Table 3-5 presents well status and groundwater flow data.

Figure 3-4 shows injection, extraction, offline (not in use), and other monitoring wells near the remediation system. **Figure 3-5** shows calculated average extraction flow rates (Panel A), cumulative groundwater extraction volumes (Panel B), and cumulative TCE mass extracted (Panel C) for all wells and for the overall system influent.

The average of the weekly flow rates from August 4, 2023, through December 7, 2023, produced the following approximate data (Panel A):

- RW-4 – less than 1 gpm
- RW-5 – 5.0 gpm
- RW-9R – 1.6 gpm
- RW-10 – 8.3 gpm
- RW-15 – 11.8 gpm
- RW-17 – 5.0 gpm
- The average of the weekly combined air stripper influent flow rates from August 4, 2023, through December 7, 2023, was approximately 34.4 gpm.

Higher than average groundwater extraction flow rates for this period were due to the high snowpack and precipitation combined with system optimization and increased uptime. These increased flow rates resulted in temporary overflow of the injection well into the overflow pond.

Figure 3-5, Panel B shows the cumulative volume of groundwater extracted from each of the remediation wells and the system overall since September 26, 2018. Flowmeter data from prior to the replacement on April 2, 2019, are inaccurate and underrepresent the actual volume of water removed because of mechanical failure and fouling; therefore, the cumulative totals presented in this graph are low. Based on readings collected from August 4, 2023, through December 7, 2023, the system removed approximately 5.9 million gallons. **Table 3-5** presents estimates of average flow rates and cumulative volumes of groundwater removed.

3.4.2 Mass Removal

Remediation well groundwater extraction rates, volumes, and COC concentrations were evaluated to understand the relationship between groundwater and COC mass discharge from the subsurface. Following each weekly inspection, the amount of water estimated to have been removed by each remediation well was multiplied by the closest TCE concentration data point, whether it was before or after that specific week's flow total. The resulting weekly mass totals for each remediation well were then summed to estimate the mass removal from the wells and the total mass removal for the remediation system (**Figure 3-5**, Panel C). Mass removal prior to September 2018 was estimated by multiplying totalizer readings collected in September 2018 by concentrations measured in remediation well samples collected in October 2018.

Issues with inaccurate flow measurements caused the total mass removal estimates to underestimate similarly the amount of mass removed from the remediation wells prior to the April 2, 2019, flowmeter replacement. **Figure 3-5** (Panel C) shows the recent mass removal extraction rates. As shown in the figure, from August 4, 2023, through December 7, 2023, mass removal rates range in TCE removal from 0.07 to 1.59 pounds. RW-15 extracts the most mass. The estimated TCE mass removed from August 4, 2023, through December 7, 2023, was approximately 3.46 pounds.

3.4.3 Performance of Remediation System

As noted in **Section 1.3.8**, the main purpose of the remediation system is to remove VOCs in extracted groundwater prior to injection. According to the permits, it is necessary to confirm that injected water remains compliant with groundwater standards, and to monitor flow rate, volume, and injection pressure.

Table 3-6 presents analytical results for the system effluent compared against the EPA MCLs and IDGW primary and secondary standards for drinking water. There was a detection of TCE in the August 8, 2023, result for INJ-1R at 0.32 J $\mu\text{g}/\text{L}$. The detection is below the MCL of 5 $\mu\text{g}/\text{L}$.

Measurement of the injection flow rate and cumulative volume is tracked using the system influent flowmeter and the individual remediation well flowmeters. **Section 3.4.1** presents these data.

The system does not include an injection pressure gauge, because the discharge of the air stripper is by gravity and flows down the hill toward the injection wells (INJ-1 and INJ-1R). However, the piping to the injection wells prevents the wells from being pressurized, because any water that is not able to infiltrate via the well overflows to Bannock County's stormwater retention ponds south of the wells.

3.5 Cell 2 and 4 Groundwater Results

This section presents analytical results from the fall 2023 groundwater monitoring event. Cell 2 is in assessment monitoring (**Section 4.2**); Cell 2 monitoring wells include MW-8, MW-9, and MW-13, and background well MW-12. Fall 2023 samples were analyzed for the Appendix I parameters and sulfide (40 CFR §258) (**Table 2-1**).

Cell 4 is in detection monitoring (**Section 4.2**); Cell 4 monitoring wells include MW-3A, MW-5AR, and MW-6A, and background well MW-4A. MW-4 is monitored as a Cell 4 monitoring well but not as an RCRA compliance well because this well is impacted by waste originating from Cell 1. Fall 2023 samples were analyzed for the Appendix I parameter suite (**Table 2-1**).

Appendix C-2 presents all fall 2023 groundwater analytical results, and **Appendix F** presents time series plots for all chlorinated ethenes and corresponding field and redox parameter results for each well.

Tables 3-7 and **3-8** present results for detected VOCs, inorganics, and field and redox parameters for Cell 2 and 4 monitoring wells, respectively. VOCs and inorganics were screened against the EPA MCLs and IDGW standards for drinking water. **Figure 3-6** presents results for PCE, TCE, cis-1,2-DCE, and VC.

3.5.1 Cell 2 VOCs

No detections of VOCs exceeded the EPA MCLs and IDGW standards in Cell 2. Detections included the following:

- cis-1,2-DCE at MW-13 (1.1 and 1.2 µg/L)
- Dichlorodifluoromethane at MW-13 (1 J µg/L)
- Trichloroethene at MW-13 (0.31 J µg/L)

3.5.2 Cell 4 VOCs

VC exceeded the EPA MCL and IDGW standard in MW-4, which is not a compliance well. Other VOCs were detected in this well. No VOCs were detected in Cell 4 compliance monitoring wells.

3.5.3 Cell 2 Inorganics

There were no detections that exceeded MCLs or primary IDGW standards. Iron and manganese exceeded the IDGW secondary standard in MW-9. **Section 4** includes an analysis background levels for inorganic chemicals.

3.5.4 Cell 4 Inorganics

There were no detections that exceeded MCLs or primary IDGW standards. Manganese exceeded the IDGW secondary standards in MW-4, which is not a RCRA compliance well. **Section 4** includes an analysis of background levels for inorganic chemicals.

3.5.5 Geochemical Parameters

Tables 3-7 and 3-8 present field parameters (conductivity, pH, temperature, turbidity, DO, and ORP). Consistent with the sampling plan (**Appendix A**), TOC, anions, alkalinity, ferrous iron, and dissolved gases were not collected in Cell 2 and 4 monitoring wells.

3.5.5.1 Specific Conductance

Specific conductance was measured at all monitoring wells in Cells 2 and 4 (**Tables 3-7 and 3-8**). Low specific conductance (540 to 919 $\mu\text{S}/\text{cm}$) was observed in the Cell 2 wells MW-8, MW-12, MW-13, and Cell 4 wells MW-3A and MW-6A. Higher specific conductance (1,026 to 5,208 $\mu\text{S}/\text{cm}$) was observed at the remaining Cell 2 and Cell 4 wells.

3.5.5.2 Redox Conditions

MW-4, and MW-9 were the only locations where anaerobic conditions were observed with low DO (less than 1.5 mg/L) and low or negative ORP. In general, other well locations in Cells 2 and 4 were aerobic, as indicated by DO greater than 1 mg/L and positive ORP (**Tables 3-7 and 3-8**). MW-5AR exhibited negative ORP at -54.1 mV but had a DO concentration of 3.37 mg/L.

3.5.5.3 pH

pH values ranged from 6.59 to 7.41 in Cell 2 and 4 monitoring wells, as presented in **Tables 3-7 and 3-8**.

Section 4

Groundwater Data Analysis

Fall 2023 data were used to update the groundwater PCE and TCE plume extents (Section 4.1) and the statistical analysis of parameters analyzed at the site (Sections 4.3 through 4.5) according to specific monitoring requirements for each area (Section 4.2). **Appendix F** presents time series data plots for chlorinated ethenes, geochemical parameters, and inorganic parameters for wells sampled in fall 2023. **Appendix G** presents the statistical methods and comprehensive statistical results for wells sampled in fall 2023.

4.1 Updated Plume Extent

Groundwater sampling results from the fall 2023 semiannual monitoring event were used to update the lateral extents of PCE and TCE groundwater plumes via data interpolation with the modeling software Leapfrog Works, v.2021.2. The data used for isoconcentration interpolation include annual 2023 sampling results from domestic wells, city monitoring wells, and municipal supply wells (#14 and #33) (to be presented under a separate cover), and fall 2023 sampling results from Cells 1, 2, and 4 (presented herein). Thus, approximately 100 locations onsite and offsite contribute to the contouring. Data from wells not sampled during the fall 2023 event are presented in previous CDM Smith monitoring reports (CDM Smith 2023b).

Figures 4-1 and 4-2 present the updated PCE and TCE plume extents, respectively, and include fall 2023 analytical and statistical trends results for wells, where evaluated. Plume extents are presented as isoconcentration contours for 5 µg/L (both PCE and TCE) and 100 µg/L (TCE only).

As shown in **Figure 4-1**, PCE above 5 µg/L is present predominantly in the groundwater along the eastern boundary of Cell 1, throughout the remediation system area, and along the Fort Hall Mine Canyon into the PVA, extending north-northwest from the base of the landfill just beyond MW-118D. The highest PCE concentration observed and used in the contouring through fall 2023 was 140 µg/L at MW-105D, upgradient of treatment system pumping wells.

As shown in **Figure 4-2**, the TCE plume has a similar footprint to PCE within the landfill boundary, but the isoconcentration contour is wider in the mouth of the canyon near the remediation system, and it extends farther to the northwest, offsite and along the PVA northwest toward the city of Pocatello. The highest TCE concentration observed and used in the contouring through fall 2023 was 780 µg/L in MW-105D, upgradient of the treatment system pumping wells. Results for offsite domestic wells included in the contouring were reported under a separate cover (CDM Smith 2024a).

For both PCE and TCE plume extents, relatively higher concentrations are found at the base of Cell 1 near the remediation system. There are poor bounding data available west of the remediation system in the offsite area between the FHML property boundary and MW-116S because of (1) no access to the private properties located there, and (2) a steep slope on the northern boundary of Cell 1 with no monitoring or domestic wells.

A description of the model development is provided in the Final QAPP (CDM Smith 2021b). The PCE and TCE plume contours were estimated with a kriging algorithm to create a contour map of the most recent PCE and TCE plumes available through 2023. A three-dimensional representation of TCE concentrations in groundwater is shown at the 5 and 100 µg/L isoconcentration levels. Nondetect results are entered as one-tenth of the reporting detection limit, with some nondetect results omitted because of high RLs. Analytical data were log transformed as part of the interpolation process. The interpolations are accurate at each data point but are estimated between data points. Groundwater interpolations have a dynamic surface resolution of 50 feet, and horizontal-to-vertical anisotropy is 10:1. Model settings were revised according to site conditions, and contours were further revised manually in reported data figures. For instance, there are limited bounding data in the distal portions of the plume, on the western side of the plume as mentioned above, and to the east of the remediation system; therefore, the original interpolations were revised to adjust for this.

4.2 Landfill Monitoring Requirements

Monitoring requirements for landfills, including FHML Cell 2 and 4, are set forth by the *Criteria for Municipal Solid Waste Landfills* (40 CFR §258, Subpart E). Appendix I and Appendix II parameters mentioned herein correspond to the parameter lists provided in Appendices I and II of 40 CFR §258, Subpart E. There are three tiers of monitoring for RCRA compliance, briefly described in the following sections.

4.2.1 Detection Monitoring

Cell 4 is currently managed under detection monitoring requirements. Under detection monitoring, semiannual monitoring of Appendix I parameters is conducted. Appendix I parameters include VOCs and metals.

Background threshold values are developed for the parameters and periodically updated with ongoing data collection as appropriate. Detectable background concentrations of metals are expected, whereas background concentrations of anthropogenic organic compounds are typically considered to be the method detection limit (MDL).

If a statistically significant increase over background for an inorganic chemical or a statistically significant detection of an organic chemical is observed that cannot be attributed to sampling or analytical error, natural variation, or a source outside of the landfill cell, then assessment monitoring is initiated within 90 days.

4.2.2 Assessment Monitoring

Cell 2 is currently managed under assessment monitoring requirements. Under assessment monitoring, the analytical list is expanded to include the Appendix II parameters, which include SVOCs, mercury, tin, cyanide, sulfide, pesticides, herbicides, PCBs, and 2,3,7,8-TCDD, in addition to all Appendix I parameters required by detection monitoring. The monitoring is conducted semiannually; during one event (i.e., fall), all Appendix II parameters are analyzed, and during the other event (i.e., spring), all Appendix I parameters are analyzed, along with any additional Appendix II parameters detected during the prior event.

Background threshold values are developed for any detected Appendix II parameter. Detectable background concentrations of metals are expected, whereas background concentrations of anthropogenic organic compounds are typically considered to be the MDL. Groundwater protection standards are also established for any detected parameters; these are typically federal MCLs or state-specific standards.

If concentrations of all Appendix II parameters are at or below background for two consecutive sampling events, then the groundwater monitoring program for the area can revert back to semiannual detection monitoring. However, if concentrations of any of the Appendix II parameters are significantly greater than background but less than the groundwater protection standard, then assessment monitoring continues. If any parameter exceeds a groundwater protection standard and the exceedance cannot be explained as a statistical anomaly, alternate sources, or natural background, corrective measures must be initiated.

4.2.3 Corrective Action

Cleanup measures must be undertaken at that site. Rather than creating a rigid regulatory framework, the RCRA corrective action cleanup process focuses on results instead of specific steps and is flexible, depending on site-specific conditions. A typical cleanup may include steps such as initial site assessment, site characterization, interim actions, evaluation of remedial alternatives, and implementation of the selected remedy. Cell 1 is currently managed under corrective action requirements but is not regulated under RCRA.

4.3 Cell 1 Source Area

Cell 1 is currently in corrective action monitoring, which includes semiannual sampling of VOCs, metals, geochemical parameters, and other parameters sampled to support evaluation of the ongoing injection pilot study, which was conducted in April 2023 in accordance with the *Pilot Study Work Plan* (CDM Smith 2023c) to evaluate potential technologies for remedy optimization. Performance monitoring and data analysis are ongoing, and the preliminary outcomes of the pilot study will be presented under a separate cover. A pump-and-treat groundwater extraction system has been in operation since 2002.

This section presents the statistical analysis of VOCs and inorganics in wells sampled in fall 2023 that are located in and downgradient of the Cell 1 source area, which includes original Cell 1 monitoring wells, remediation system extraction wells (currently online or offline and repurposed as monitoring wells) and select offsite Bannock County monitoring wells. In online extraction wells, only PCE and TCE trends are statistically analyzed. Data sets for monitoring wells not sampled in fall 2023 have been previously analyzed and presented in respective groundwater monitoring reports and are not discussed herein.

Appendix F provides comprehensive time series plots for chlorinated ethenes, daughter products, geochemical parameters, and inorganics data collected in monitoring wells since 2002.

4.3.1 Statistical Approach

Appendix G presents the complete statistical approach (**Section G.2.1**) and analysis, which is summarized below.

- **Cell 1 Statistical Tests**
 - Comparison of upper confidence limit (UCL) of the mean to standard if the standard is available.
 - Mann–Kendall trend analysis and Theil–Sen regression.
 - Parameters with data sets consisting entirely of MDL values were not analyzed and are not shown.
- **Analyzed Data Range:** August 2017 through October 2023. At present, performance monitoring wells for the April 2023 injection pilot study are still statistically analyzed starting in August 2017 because there is not enough data since April 2023 to conduct meaningful statistics.
- **Exceedance Criteria:** UCL of the mean of a COC exceeds the standard in Cell 1 or offsite monitoring well (does not apply to remediation system wells). Cell 1 is not regulated under RCRA; however, the organic and inorganic parameter lists match the RCRA Appendix I list.
- **Source Background Data:** Not applicable to Cell 1 or offsite wells.
- **Confidence Limits Criteria:** UCL of the mean is calculated with a 95% confidence interval for data sets at least two distinct detected results.
- **Trend Analysis Criteria:**
 - Trends are only calculated for data sets with at least 50% detected results and at least six data points.
 - Trends are only calculated for data sets where the UCL of the mean exceeds the standard.
 - A statistically significant trend is present if the confidence level is greater than 95% for increasing and decreasing results, with a direction corresponding to the sign of S. As described in **Appendix G**, Mann–Kendall test results for Cell 1 wells use a range for alpha to define probably significant trends where the confidence level is between 90% and 95%. Additionally, the coefficient of variation is used to distinguish between no trend and no trend with stable concentrations (i.e., low variability) for data sets with confidence levels below 90% and for which no statistically significant trend has been identified (Connor et al. 2012).

The following sections provide a results summary for the statistical analysis of Cell 1, organized by parameter group.

4.3.2 VOCs

Tables G-1 through **G-3** present the complete statistical analysis for VOCs in Cell 1, offsite, and remediation system extraction wells. **Tables 4-1** through **4-3** summarize key statistical results.

4.3.2.1 Comparison Latest Value to Standard

Consistent with past results, benzene, PCE, TCE, and VC exceeded MCLs in one or more Cell 1 monitoring wells in fall 2023 (**Table 3-2**). The maximum concentrations were detected in the following wells:

- Benzene: MW-111D (10 µg/L)
- PCE: MW-105D (140 µg/L)
- TCE: MW-105D (780 µg/L)
- VC: MW-113S (66 J µg/L)

4.3.2.2 Comparison of UCL to Standard

UCLs of the mean for PCE and TCE exceeded the standard in all Cell 1 monitoring wells currently sampled semiannually: MP-1, MP-2, MP-3, MP-4, MW-101S, MW-102S (TCE only), MW-105S/D, MW-109S/D, MW-110D (TCE only), MW-110S, MW-111D (TCE only), MW-112M/D, MW-113S/D, MW-117R, MW-118D, MW-119S/D, MW-120S/D, MW-123 (TCE only), MW-124, MW-125, RW-1, RW-2, RW-3, and RW-16 (**Table 4-1**).

Other parameters analyzed in fall 2023 with a UCL exceeding the standard were as follows:

- Benzene in MW-111D and MW-113S
- Chloroform in MW-105D and MW-113S
- VC in MP-1, MP-2, MW-105S, MW-110S, MW-111D, MW-113S/D, MW-120D, MW-124, RW-1, and RW-2

Additionally, the UCL of the mean exceeded the standard for TCE in offsite wells MW-103S and MW-116S (**Table 4-2**).

These results are generally consistent with previous results presented in recent CDM Smith monitoring reports (e.g., CDM Smith 2023b).

4.3.2.3 Trend Analysis

In addition to the statistical results tables, **Figures 4-1** and **4-2** present a visual trend analysis summary for PCE and TCE in the Cell 1 source area wells.

The following VOC trends were evaluated in Cell 1 monitoring wells (**Table 4-1**):

- PCE exhibited increasing trends in MW-101S, MW-105D, and MW-119S/D. PCE exhibited decreasing trends in MP-2, MW-113S/D, MW-118D, MW-120S, and RW-2 and a probably decreasing trend in MW-120D. PCE exhibited stable trends in MP-1, MW-112D, and RW-3. The remainder of the evaluated data sets yielded no significant trends.
- TCE exhibited increasing trends in MW-101S, MW-110S, MW-119S, and MW-120D and a probably increasing trend in MW-119D. TCE exhibited decreasing trends in MP-2, MW-105S, MW-113S/D, MW-118D, and MW-120S. TCE exhibited stable trends in MP-4, MW-109D, MW-

110D, MW-112D, RW-2, and RW-3. The remainder of the evaluated data sets yielded no significant trends. In MW-109S, TCE concentrations have fluctuated over the last few years, where concentrations are lower in the spring than in the fall; however, supplemental statistical test called the Seasonal Kendall was applied to these data sets and found no significant trend (**Appendix G**).

- VC exhibited increasing or probably increasing trends in MW-111D and RW-2; stable trends in MP-1 and MP-2; and decreasing or probably decreasing trends in MW-105S, MW-110S, MW-113S/D, and MW-120D. The remainder of the evaluated data sets yielded no significant trends.
- Benzene exhibited decreasing and probably decreasing trends in MW-111D and MW-113S, respectively.
- Chloroform exhibited a decreasing trend in MW-113S.

The following trends were evaluated in offsite monitoring wells (**Table 4-2**):

- TCE exhibited an increasing trend in MW-103S and a decreasing trend in MW-116S.

The following trends were evaluated in online remediation system extraction wells (**Table 4-3**):

- PCE and TCE exhibited increasing and probably increasing trends in RW-10 and RW-17, respectively.
- PCE and TCE exhibited no significant or stable trends in all other wells sampled.

Table 4-4 presents a comparison of Mann-Kendall trends results for PCE and TCE between the spring 2023 analysis (CDM Smith 2024b) and the present analysis. About half of the data sets exhibiting increasing or probably increasing trends as of spring 2023 were no longer exhibiting statistically significant trends after fall 2023. This is not surprising, because as discussed in the spring 2023 report, the trendlines for many of these data sets are relatively shallow, as indicated by the Theil-Sen slope shown in **Appendix G** tables. Additionally, many of the p-values for Mann-Kendall trends are close to the significance level range (alpha between 0.1 and 0.05, corresponding to confidence levels of 90% and 95%, respectively). Therefore, it is not unexpected that small shifts in concentrations from event to event influence the statistical confidence just above or below the threshold at which a trend is considered statistically significant. **Appendix G** provides more information about the statistical approach.

Recent changes in the Mann-Kendall trend results for some wells can also be explained by considering the evaluated time frame. In Cell 1 monitoring wells, most data sets have higher concentrations prior to 2018, followed by lower concentrations around 2018, which have been slowly increasing in concentration in some wells. Now that the evaluation time frame starts mid-2017 or 2018, depending on available data for the well, the statistical confidence level for the Mann-Kendall trend analysis has reached the level where a trend is considered statistically relevant for the evaluated time frame. **Appendix F** includes all COC time series plots for visual context of concentration changes over time.

4.3.3 Inorganics

Comprehensive metals analysis has not been conducted since 2021. Select wells have been sampled of total and/or dissolved metals under pilot study performance monitoring. Consistent with prior statistical evaluations, this section focuses on total fraction metals analyzed from the current sampling event for fall 2023. **Table G-4** presents the complete statistical analysis for inorganics in Cell 1. **Table 4-5** summarizes key statistical results.

4.3.3.1 Comparison Latest Value to Standard

In all five Cell 1 monitoring wells sampled for inorganics in fall 2023, both iron and manganese exceeded IDGW secondary standards. There were no exceedances of standards in RCRA regulated inorganics.

4.3.3.2 Comparison of UCL to Standard

In all five Cell 1 monitoring wells sampled for inorganics in fall 2023, both iron and manganese UCLs of the mean exceeded IDGW secondary standards. There were no exceedances of standards in RCRA regulated inorganics.

These wells are near the April 2023 pilot study, which will be reported under a separate cover. The pilot study involved the injection of fermentable carbon and zero-valent iron amendments into the subsurface to enhance reducing conditions that facilitate degradation of COCs. Elevated iron concentrations are likely directly related to iron delivered to the aquifer, and elevated manganese concentrations are likely indirectly related to the more reducing conditions enhanced by the amendment. **Appendix F** includes inorganics time series plots of these metals.

4.3.3.3 Trend Analysis

Trend analysis was not performed for wells sampled in fall 2023 because there were not enough data points in each data set (i.e., fewer than six).

4.3.4 Cell 1 Statistical Summary

Cell 1 is currently managed under corrective action requirements. Cell 1 monitoring wells are located throughout the FHML site—upgradient, cross-gradient, and downgradient of the remediation system. If the remediation system effectively captured COC mass from Cell 1, downgradient Cell 1 monitoring wells would be expected to have lower concentrations of COCs than upgradient and cross-gradient wells. Furthermore, downgradient wells would be expected to have decreasing trends along the time period of effective remediation system operation.

However, although there are fewer increasing COC trends exhibited now than recently reported (CDM Smith 2024b), PCE and TCE exceedances above the MCL persist in Cell 1 monitoring wells to the west, east, and downgradient of the remediation system, and PCE and TCE exhibit statistically increasing trends in some Cell 1 monitoring wells, which indicates a continuing source of contamination and incomplete capture of the remediation system, consistent with previous interpretations (CDM Smith 2023a). As shown in **Figures 4-1** and **4-2**, decreasing trends are typically observed in wells on the west side of the canyon, and increasing trends are typically observed in wells on the east side of the canyon, with many stable or insignificant trends observed in wells throughout the canyon.

Because multiple COCs and metals continue to exceed UCLs and exhibit increasing trends in some wells, corrective action management continues to be appropriate for Cell 1. Future sampling events will collect data used to evaluate the performance of the April 2023 pilot study and will be presented in a forthcoming pilot study report after the 1-year performance monitoring period is complete.

4.4 Cell 2

Cell 2 is currently in assessment monitoring. MW-12 is the background well, and MW-8, MW-9, and MW-13 are downgradient compliance wells. MW-7 is not a compliance well and has been impacted by waste in the Cell 1 area; therefore, it was not sampled or evaluated herein. Samples collected from Cell 2 monitoring wells during the fall 2023 monitoring event were analyzed for all Appendix II parameters, according to assessment monitoring requirements (Section 4.2.2).

This section presents the statistical analysis of Appendix II organic and inorganic parameters in Cell 2 monitoring wells sampled in fall 2023. **Appendix F** provides comprehensive time series plots for chlorinated ethenes, daughter products, geochemical parameters, and inorganics.

4.4.1 Statistical Approach

Appendix G presents the complete statistical approach and analysis, which is summarized below.

- ***Cell 2 Statistical Analyses:***
 - Comparison of latest value to standard if available.
 - Comparison of lower confidence limit (LCL) of the mean to standard if available.
 - Comparison of latest value to upper prediction limit (UPL) of background for inorganics if the standard is not available.
 - Mann-Kendall trend analysis and Theil-Sen regression.
 - Parameters with data sets consisting entirely of MDL values were not statistically analyzed and are not shown. The only data sets presented with 100% MDL values are those for inorganic parameters in background well MW-12, which are shown for comparison to downgradient compliance wells.
- ***Analyzed Data Range:*** August 2017 through October 2023
- ***Exceedance Criteria:***
 - LCL of the mean that exceeds the promulgated standard may trigger corrective action.
 - Either a fall 2023 Appendix II inorganic result that exceeds UPL of background or a fall 2023 detection (exceedance of background) of Appendix II organic requires continuation of the assessment monitoring management tier.

- **Source of Background Data:**
 - Organic parameters: Not applicable. All detections of organic Appendix I or Appendix II parameters (40 CFR §258, Subpart E) are considered exceedances of background.
 - Inorganic parameters: Background compliance well MW-12, interwell method.
- **UPL of Background Criteria:** The UPL is calculated for background data sets with at least two distinct detected results.
- **Confidence Limits Criteria:** LCL of the mean is calculated with a 95% confidence interval for data sets with at least two distinct detected results.
- **Trend Analysis Criteria:**
 - Trends are only calculated for data sets with at least 50% detected results and at least six results.
 - Trends are only calculated for RCRA Appendix II parameters with an exceedance of the standard (LCL) or background (detection for organics).
 - A statistically significant trend is present if the confidence level is greater than 95% for increasing and decreasing results, with a direction corresponding to the sign of S. No trend is established for confidence levels below 95%.

The following sections provide a results summary for the statistical analysis of Cell 2 wells, organized by parameter group.

4.4.2 Organic Parameters

Tables G-5 and G-6 present the complete statistical analysis for VOCs and non-VOC organics, respectively, in Cell 2. Tables 4-6 and 4-7 summarize key statistical results.

4.4.2.1 Comparison of Latest Value and LCLs to Standard

For Appendix II organics in Cell 2 monitoring wells, neither fall 2023 results nor LCLs of the data set mean exceeded promulgated standards, where standards exist.

4.4.2.2 Comparison of Latest Value to Background

Background concentrations of Appendix II organic parameters are considered to be the MDL; therefore, any detections constitute an exceedance of background (Section 4.2.2), which include the following data sets:

- VOCs: In MW-13, cis-1,2-dichloroethene (below standard), dichlorodifluoromethane (J-qualified, no standard), and TCE (J-qualified, below standard) were detected in fall 2023. Appendix G presents time series plot data for these parameters. cis-1,2-DCE and dichlorodifluoromethane have consistently been detected in recent sampling at low concentrations. TCE has been detected occasionally at low concentrations in the past. Results were generally similar to spring 2023 (CDM Smith 2024b), although fewer VOCs were detected. Low concentrations of several VOCs are often detected in MW-13.

- Non-VOC organics: In MW-13, various SVOCs and organochlorine pesticides were detected with J-flagged results. They are not typically detected in this well. In addition, benzo(a)pyrene was detected with a J-flag, and two organochlorine pesticides were detected in MW-12 with J-flagged results. These parameters are not typically detected in Cell 2 monitoring wells.

4.4.2.3 Trend Analysis

Mann-Kendall trend results were as follows (**Table 4-6**):

- VOCs: In MW-13, increasing trend for cis-1,2-DCE; no significant trend for dichlorodifluoromethane.
- Non-VOC organics: Trend analysis was not performed because data sets consist primarily of nondetect results.

4.4.3 Inorganic Parameters

Table G-7 presents the complete statistical analysis for inorganics in Cell 2. **Table 4-8** summarizes key statistical results.

4.4.3.1 Comparison of Latest Value and Standards and LCLs

No Appendix II inorganic parameter exceeded its promulgated standard in fall 2023. Additionally, LCLs of the mean in Cell 2 compliance wells did not exceed RCRA Appendix II parameters for inorganics. Parameters without a standard include cobalt, nickel, sulfide, tin, and vanadium.

In MW-9, iron and manganese fall 2023 results and LCLs of the mean exceeded the IDGW secondary standards. Inorganics with secondary IDGW standards include iron, manganese, silver, and zinc.

4.4.3.2 Comparison of Latest Value to Background

All fall 2023 inorganics results were compared to background, which is defined by the UPL of the background data sets for MW-12. **Appendix G** presents individual data graphs for RCRA parameters exceeding background, which included the following data sets:

- MW-8: arsenic, which has been detected in this well in every sample since 2002.
- MW-9: nickel and zinc, both of which have been detected in this well in every sample since 2002.
- MW-13: Arsenic and barium, both of which have been detected in this well in every sample since 2002.

Fall 2023 results exceeding background were one to two orders of magnitude lower than the standard for the respective parameter. Nickel is the only parameter without a standard.

Inorganics with secondary IDGW standards that exceeded background included iron and manganese in MW-9 and manganese in MW-13. These metals are not regulated under RCRA.

4.4.3.3 Trend Analysis

A Mann-Kendall trend analysis was performed for RCRA parameters per Section 4.4.1.

Downgradient Compliance Wells

The following concentration trends were observed for Cell 2 compliance wells in which the fall 2023 result exceeded background (**Table 4-8**):

- MW-8: Arsenic is decreasing.
- MW-9: Nickel and zinc are decreasing.
- MW-13: Neither arsenic nor barium exhibit a statistically significant trend.

Upgradient Background Well

Background compliance well MW-12 exhibited no statistically significant trends for arsenic, barium, or selenium. Chromium and cobalt exhibited a decreasing trend with very shallow Theil-Sen slopes. Other parameters were not evaluated for trends in MW-12 because of the high percentage of MDL results in the evaluated period.

4.4.4 Cell 2 Statistical Summary

In assessment monitoring, if any RCRA Appendix II parameter exceeds a promulgated standard and the exceedance cannot be explained as a statistical anomaly, alternate sources, or natural background, then corrective measures must be initiated. However, if concentrations of any of the Appendix II parameters are significantly greater than background but less than the groundwater protection standard, then assessment monitoring continues. Exceedances of background do not trigger corrective action unless there is a statistically significant increasing trend, which highlights COCs with future potential to exceed their standard (**Section 4.2**).

In Cell 2 monitoring wells, no Appendix II parameters exceeded promulgated standards in fall 2023. However, several VOCs, SVOCs, and organochlorine pesticides were detected at low, typically J-flagged concentrations in MW-9, MW-12, and MW-13 (**Tables 4-6 and 4-7**). Additionally, several inorganics exceeded the UPL of background in MW-8, MW-9, and MW-13 (**Table 4-8**). VOC and inorganics results are generally consistent with recent evaluations, and non-VOC organics detections will be monitored closely in future sampling events to determine if fall 2023 sampling results were anomalous.

Exceedances of background (both UPL and MDL) require the continuation of assessment monitoring management for Cell 2 (**Section 4.2.2**).

4.5 Cell 4

Cell 4 is currently in detection monitoring. MW-4A is the background well, and MW-3A, MW-5AR, and MW-6A are the downgradient compliance wells. MW-4 is not a compliance well, but it is part of the monitoring network for Cell 2 and is used in the Cell 1 performance monitoring program. Samples collected from Cell 4 monitoring wells during the fall 2023 monitoring event were analyzed for Appendix I VOCs and metals, according to detection monitoring requirements (**Section 4.2.1**).

This section includes a discussion on the statistical analysis of Appendix I organic and inorganic parameters in Cell 4 compliance monitoring wells sampled in fall 2023. **Appendix F** provides

comprehensive time series plots for chlorinated ethenes, daughter products, geochemical parameters, and inorganics.

4.5.1 Statistical Approach

Appendix G presents the complete statistical approach and analysis, which is summarized below.

- **Cell 4 Statistical Analyses:**
 - Comparison of latest value to standard, if the standard is available
 - *If latest value exceeds the standard, comparison of LCL to standard*
 - Comparison of latest value to MDL for organics
 - Comparison UPL of background for inorganics
 - Mann-Kendall trend analysis and Theil-Sen regression
 - Parameters with data sets consisting entirely of MDL values were not statistically analyzed and are not shown. The only data sets presented with 100% MDL values are those for inorganic parameters in background wells, which are shown for comparison to downgradient compliance wells.
- **Analyzed Date Range:** August 2017 through October 2023
- **Exceedance Criteria:**
 - Fall 2023 result or LCL of the mean exceeds the promulgated standard (may trigger corrective action).
 - Fall 2023 result exceeds the UPL of background (inorganic) or MDL of the parameter (organic) (may trigger assessment monitoring).
- **Source of Background Data:**
 - Organic parameters: Not applicable. All detections of organic Appendix I parameters (40 CFR §258, Subpart E) are considered exceedances of background.
 - Inorganic parameters: Background compliance well MW-4A, interwell method.
- **UPL of Background Criteria:** The UPL is calculated for background data sets with at least two distinct detected results.
- **Confidence Limits Criteria:** LCL of the mean is calculated with a 95% confidence interval for data sets at least two distinct detected results.
- **Trend Analysis Criteria:**
 - Trends are only calculated for data sets with at least 50% detected results and at least six results.

- Trends are only calculated in compliance wells for data sets with an exceedance of background.
- A statistically significant trend is present if the confidence level is greater than 95% for increasing and decreasing results, with a direction corresponding to the sign of S. No trend is established for confidence levels below 95%.

The following sections provide a results summary for the statistical analysis of Cell 4 wells, organized by parameter group.

4.5.2 VOCs

Table G-7 presents the complete statistical analysis for VOCs in Cell 4. **Table 4-9** summarizes key statistical results.

4.5.2.1 Comparison of Latest Value to MDL and Standard

Background concentrations of Appendix I organic parameters are typically considered to be the MDL; therefore, any detection constitutes an exceedance of background (Section 4.2.1). VOCs were not detected in compliance wells; however, several VOCs were detected in MW-4 (not a compliance well), and VC exceeded its promulgated standard in fall 2023.

4.5.2.2 Trend Analysis

Mann-Kendall analysis was not performed for any VOC data from the compliance and background wells because there were no VOC detections (i.e., exceedances of background) in wells with sufficient data to perform the test. Several VOCs exhibited statistically significant trends in MW-4 (not a compliance well), as shown in **Table 4-9**.

4.5.3 Inorganics

The Appendix I inorganics group consists of 15 metals. Tin, an Appendix II parameter, was also analyzed in Cell 4 samples. **Table G-8** presents the complete statistical analysis for inorganics in Cell 4. **Table 4-10** summarizes key statistical results.

4.5.3.1 Comparison of Latest Value to Standards

No Appendix I inorganic parameter value exceeded promulgated standards in Cell 4 compliance monitoring wells, which is consistent with recent results. Cobalt, nickel, and vanadium do not have standards.

In MW-4, manganese exceeded the IDGW secondary standard.

4.5.3.2 Comparison of Latest Value to Background

All fall 2023 inorganics results were compared to background, which is defined by the UPL of the data sets from background well MW-4A. The following RCRA parameters exceeded background in compliance wells in fall 2023:

- MW-6A: Barium and zinc. Barium is frequently detected around 200 µg/L, an order of magnitude below the standard and near the UPL of background (190 µg/L). Zinc has been detected intermittently in the sampling history, orders of magnitude below its standard

(5,000 µg/L) and near the UPL of background (10 µg/L). **Appendix G** presents time series plot data for these chemicals, starting at 2002, where data are available.

In MW-4 (not a compliance well), barium, cobalt, and vanadium exceeded background.

Additionally, inorganics with secondary IDGW standards that exceeded background included iron and manganese in MW-4.

4.5.3.3 Trend Analysis

A Mann-Kendall trend analysis was performed for RCRA parameters per Section 4.5.1.

Downgradient Wells

The following results were identified for evaluated data sets (**Table 4-10**):

- MW-6A: Barium did not exhibit a statistically significant trend.
- MW-4 (noncompliance): Barium did not exhibit a statistically significant trend, cobalt displayed a decreasing trend, and vanadium displayed an increasing trend.

Upgradient Background Well

Background compliance well MW-4A exhibited no statistically significant trends for arsenic, selenium, or vanadium. Barium exhibited a decreasing trend. Other parameters were not evaluated for trends in MW-4A because of the high percentage of MDL results in the evaluated period.

4.5.4 Cell 4 Statistical Summary

In detection monitoring, if a statistically significant increase over background or a detection above the standard cannot be attributed to sampling or analytical error, natural variation, or a source outside of the landfill cell, then assessment monitoring is initiated within 90 days. For FHML, background levels are considered to be the MDL for organic Appendix II parameters, because no background levels are expected for these chemicals; therefore, detections of organics constitute an exceedance of background.

In Cell 4 monitoring wells, no Appendix I parameters exceeded promulgated standards in fall 2023 (**Tables 4-9** and **4-10**). VOCs were not detected (i.e., did not exceed background) in compliance wells. Inorganics did not exceed background in compliance wells, except for barium and zinc in MW-6A. Barium concentrations have been consistently one order of magnitude lower than the standard over the monitoring period, and concentrations are close to the UPL of background. Zinc was detected two orders of magnitude below its standard. These results are generally consistent with recent evaluations, and the exceedance of barium above background will require continuing evaluation under the detection monitoring tier to determine whether any change is required in the monitoring program for Cell 4.

Section 5

Conclusions and Recommendations

Groundwater samples were collected in October during the fall 2023 sampling event to achieve the following objectives:

- Evaluate groundwater gradients and flow within and downgradient from the FHML Cell 1 source area and offsite plume and within Cell 2 and 4 areas.
- Evaluate the Cell 1 remedy and determine the current nature and extent of the PCE and TCE plume discharging from Cell 1, the impact of the remediation system, and impacts within PVA.
- Evaluate the status of RCRA compliance monitoring at Cells 2 and 4 with updated statistical analysis of RCRA Subtitle D Appendix I and/or II parameters.
- Evaluate the spatial and time concentration trends in the Cell 1 source area, offsite plume, and Cells 2 and 4 for regulated chemicals above promulgated standards and/or background.
- Determine whether the air stripper remediation system is meeting the discharge permit requirements.

5.1 Cell 1 Source Area and Offsite Plume

5.1.1 Conclusions and Key Changes

In fall 2023, VOCs were analyzed from all sampled locations, and select wells were sampled for additional analytes to support pilot study monitoring (**Table 2-1**). Chemicals that exceeded MCLs in the Cell 1 source area and offsite monitoring wells included PCE and TCE, as presented in **Section 3.3**. Additionally, PCE, TCE, benzene, and VC data sets statistically exceed promulgated standards in one or more wells, as indicated by calculation of the UCLs of the mean, presented in **Section 4.3**. Statistically significant increasing and decreasing trends of PCE and TCE concentrations have been observed in wells upgradient, downgradient, and throughout the remediation system area, which indicates that there is a continuing source of contamination and incomplete capture of contamination by the existing remediation system. These findings are generally consistent with previous interpretations (CDM Smith 2023a). However, about half of the data sets exhibiting increasing or probably increasing trends as of spring 2023 were no longer exhibiting statistically significant trends after fall 2023.

5.1.2 Recommendations and Future Changes

Tables 5-1 and **5-2** present the recommended FHML sampling plan for spring and fall 2024 sampling events, respectively. The following items would be conducted:

- A comprehensive synoptic groundwater level measurement across Cells 1, 2, and 4
- Semiannual spring and fall sampling of monitoring wells for various monitoring objectives:

- Downgradient and FHML boundary wells to monitor performance of the existing treatment system and capture
- Source area wells to evaluate COC discharge to the groundwater plume
- Upgradient wells to track input of COCs to the remediation system
- Offsite wells for performance monitoring in the distal plume
- Pilot study area wells to evaluate performance of the April 2023 injection pilot study (to be evaluated under a separate cover)

As described in **Section 5.4**, per the passive sampling approach memorandum (CDM Smith 2023d) and associated sampling method evaluation (**Appendix C-1**), select wells would be sampled via passive methods only (e.g., HydraSleeve).

- Except where deemed necessary for pilot study monitoring, the statistical data set for Cell 1 monitoring wells will be set to start at August 2017 (where data is available) and be expanded with each future event, thus building larger data sets evaluated statistically and improving the confidence of the statistical outcomes. If in the future it becomes appropriate to adjust the start date again, the change will be noted in a future semiannual monitoring report.

5.2 Cells 2 and 4

5.2.1 Conclusions and Key Changes

Cell 2 is in assessment monitoring. In Cell 2 monitoring wells, no Appendix II parameters exceeded promulgated standards in fall 2023. However, several VOCs, SVOCs, and organochlorine pesticides were detected at low, typically J-flagged concentrations in MW-9, MW-12, and MW-13, and several inorganics exceeded the UPL of background in MW-8, MW-9, and MW-13 (**Section 4.4**). VOC and inorganics results are generally consistent with recent evaluations, and non-VOC organics detections will be monitored closely in future sampling events to determine if fall 2023 sampling results were anomalous. Exceedances of background (both UPL and MDL) require the continuation of assessment monitoring management for Cell 2.

Cell 4 is in detection monitoring. In Cell 4 monitoring wells, no Appendix I parameters exceeded promulgated standards in fall 2023, and VOCs were not detected (i.e., did not exceed background) in compliance wells (**Section 4.5**). Inorganics did not exceed background in compliance wells, except for barium and zinc in MW-6A. These results are generally consistent with recent evaluations, and the exceedance of barium above background will require continuing evaluation under the detection monitoring tier to determine whether any change is required in the monitoring program for Cell 4.

No significant changes were noted in Cell 2 and 4 monitoring results or statistical analysis. Current monitoring tiers are considered appropriate for each cell.

5.2.2 Recommendations and Future Changes

No changes are proposed to the 2024 sampling plan. **Tables 5-1** and **5-2** present the recommended FHML sampling plan for spring and fall 2024 sampling events, respectively.

- In spring 2024, Cell 2 monitoring wells will be sampled for all Appendix I parameters and Appendix II organochlorine pesticides and SVOCs. Cell 4 monitoring wells will be sampled for all Appendix I parameters.
- In fall 2024, Cell 2 monitoring wells will be sampled for all Appendix II parameters, and Cell 4 monitoring wells will be sampled for Appendix I parameters.

5.3 Operation of Pump-and-Treat System

5.3.1 Conclusions and Key Changes

The remediation system efficiently operated throughout the monitoring period with no unplanned shutdowns other than annual routine maintenance. Quarterly compliance sampling from the injection well indicate that the air stripper system is meeting the requirements of the discharge permit.

5.3.2 Recommendations and Future Changes

Operation of the remediation system will continue throughout 2024 to ensure that the system will continue operating to meet requirements of the CO, including the following:

- Operation and maintenance of the system:
 - Operators will continue to confirm the system is operating as intended.
 - Operators will confirm continued operation of the air stripper and blower, continued level control of extraction pumps, and continued operation of the antiscalant metering pump.
 - Operators will collect weekly extraction well data, including flow totals, instantaneous flow rates, instantaneous pump speeds, operational runtime, and pump starts/stops.

If appropriate, the following maintenance and optimization activities may be considered for 2024, based on their expected value:

- Further optimization of pumping based on operational data.
- Operational data listed above will be supplemented with periodic evaluation of well-specific capacity for analysis to determine when well efficiency is dropping and when additional rehabilitation may be needed. Rehabilitation may also be considered for wells that have not been recently rehabilitated.
- Flowmeters and pumps will be evaluated and replaced as needed, depending on performance.

Performance and compliance monitoring will be continued, with quarterly sampling of the injection well. In the first and third quarter of each year, VOCs will be analyzed using EPA Method

8260. In the second and fourth quarter of each year, VOCs will be analyzed using EPA Methods 8260 and 8011 and the extended suite of parameters (**Tables 5-1 and 5-2**).

5.4 Passive Sampling Side-by-Side Comparison

5.4.1 Conclusions

The statistical analysis conducted on the paired measurements of various analytes from low-flow and passive samples indicates that the passive method has a small but statistically significant positive bias compared to the low-flow method, with a p-value of 0.027 and a median difference of +0.8 µg/L. While this bias is relatively small, it is essential to consider its implications for decision-making purposes. Despite these observed discrepancies, the overall favorable comparison results, as illustrated in Appendix C-1, Table 3, support the recommendation for adopting passive sampling for groundwater monitoring.

Despite the observed bias, the passive sampling method demonstrates promising potential for groundwater monitoring at FHML in Bannock County, Idaho. Therefore, CDM Smith recommends proceeding with the implementation of passive sampling techniques for a subset of monitoring wells during future sampling events. Specifically, CDM Smith proposes incorporating passive sampling for the spring 2024 sampling event at the selected monitoring wells outlined in Appendix C-1, Table 1. An additional six pilot study performance monitoring wells will be sampled with low-flow sampling methods until after the pilot study monitoring period (April 2023 through April 2024) because additional analytes beyond VOCs are analyzed. Thereafter, these wells will be sampled with passive methods and analyzed for VOCs only.

Moving forward, it is recommended that the site groundwater QAPP be updated to include passive sampling as an approved sampling technique. This adjustment will ensure consistency and adherence to established sampling protocols while leveraging the benefits of passive sampling methods for groundwater monitoring purposes.

5.4.2 Recommendations

The side-by-side comparison between passive HydraSleeve and low-flow sampling methods has provided valuable insights into the efficacy of groundwater monitoring at the FHML site. Despite a small positive bias observed with passive measurements, the overwhelming majority of results met acceptance criteria, and very few Type I and Type II errors were identified. Therefore, CDM Smith recommends transitioning to passive sampling for the specified subset of wells outlined in Appendix C-1, Table 1, commencing with the spring 2024 sampling event.

Section 6

References

- AEEC 2018a. *2017 Offsite Groundwater Monitoring Report, Fort Hall Mine Landfill, Bannock County, Idaho*. Salt Lake City, Utah. Report prepared for Bannock County Public Works.
- AEEC 2018b. *Cell 2 Assessment Report, Fort Hall Mine Landfill, Bannock County, Idaho*. Salt Lake City, Utah. Report prepared for Bannock County Public Works.
- American Geotechnics. 2012. *Geotechnical Investigation, MSW Landfill Gas to Energy Project, Bannock County Landfill, Pocatello, Idaho*.
- Brown and Caldwell. 1994. *Phase II Hydrogeologic Assessment Draft Report, Bannock County, Idaho*.
- Brown and Caldwell. 1993. *Final Revisions to Preliminary Engineering Report, Bannock County, Idaho*.
- Brown and Caldwell. 1992. *Preliminary Hydrogeologic Assessment in the Vicinity of Fort Hall Canyon Landfill, Bannock County, Idaho*.
- CDM Smith 2024a. *Draft 2023 Offsite Groundwater Monitoring Report*. Helena, Montana. Report prepared for Bannock County Public Works.
- CDM Smith 2024b. *Draft 2023 Spring Semiannual Cell 1, 2 and 4 Groundwater Monitoring and Remediation System Operation and Maintenance Report*. Helena, Montana. Prepared for Bannock County Public Works.
- CDM Smith 2023a. *Final 2022 Fall Semiannual Cell 1, 2 and 4 Groundwater Monitoring and Remediation System Operation and Maintenance Report*. Helena, Montana. Report prepared for Bannock County Public Works.
- CDM Smith 2023b. *Final 2022 Spring Semiannual Cell 1, 2 and 4 Groundwater Monitoring and Remediation System Operation and Maintenance Report*. Helena, Montana. Prepared for Bannock County Public Works.
- CDM Smith 2023c. *Final 2023 Pilot Study Work Plan*. Helena, Montana. Report prepared for Bannock County Public Works.
- CDM Smith 2023d. *Passive Sampling Approach at Fort Hall Mine Landfill, Bannock County, Idaho*. Helena, Montana. Report prepared for Idaho Department of Environmental Quality.
- CDM Smith 2021a. *Final 2020 Fall Semi-annual Cell 1, 2 and 4 Groundwater Monitoring and Remediation System Operation and Maintenance Report*. Helena, Montana. Prepared for Bannock County Public Works.

CDM Smith. 2021b. *Final Groundwater Monitoring Program Plan Quality Assurance Project Plan Revision 1*, Fort Hall Mine Landfill, Bannock County, Idaho. Helena, Montana. Prepared for Bannock County Public Works.

CDM Smith 2020. *Final 2020 Spring Semi-annual Cell 1,2 and 4 Groundwater Monitoring and Remediation System Operation and Maintenance Report*. Helena, Montana. Prepared for Bannock County Public Works.

CDM Smith. 2019. *Final Site Characterization Plan*.

CH2M HILL. 1994. *Hydrogeology and Assessment of TCE Contamination in the Southern Portion of the Pocatello Aquifer – Phase I Aquifer Management Plan Final Report*, City of Pocatello Water Department, Pocatello, Idaho. Boise, Idaho. Prepared for The City of Pocatello Water Department.

Connor, J., S. Farhat, and M. Vanderford. 2012. *Software User's Manual GSI Mann-Kendall Toolkit for Constituent Trend Analysis*. Version 1. https://www.gsienv.com/gsi-technical-guidance/?resource_search=mann%20kendall

Criteria for Municipal Solid Waste Landfills. 40 CFR §258, Subpart E, Appendices I and II.

EPA. 2020a. *National Functional Guidelines for Inorganic Superfund Methods Data Review*. EPA-542-R-20-006.

EPA. 2020b. *National Functional Guidelines for Organic Superfund Methods Data Review*. EPA-540-R-20-005.

EPA. 2020c. *National Functional Guidelines for High Resolution Superfund Methods Data Review*. EPA 542-R-20-007.

Idaho Department of Environmental Quality (IDEQ). 2016a. *Consent Order in the Matter of Contamination of Groundwater Near the Fort Hall Municipal Solid Waste Landfill*.

IDEQ. 2016b. *Compliance Agreement Schedule between Bannock County and the Idaho Department of Environmental Quality*.

Idaho Department of Water Resources (IDWR). 2023. *Injection Well Permit 29W-006-002*.

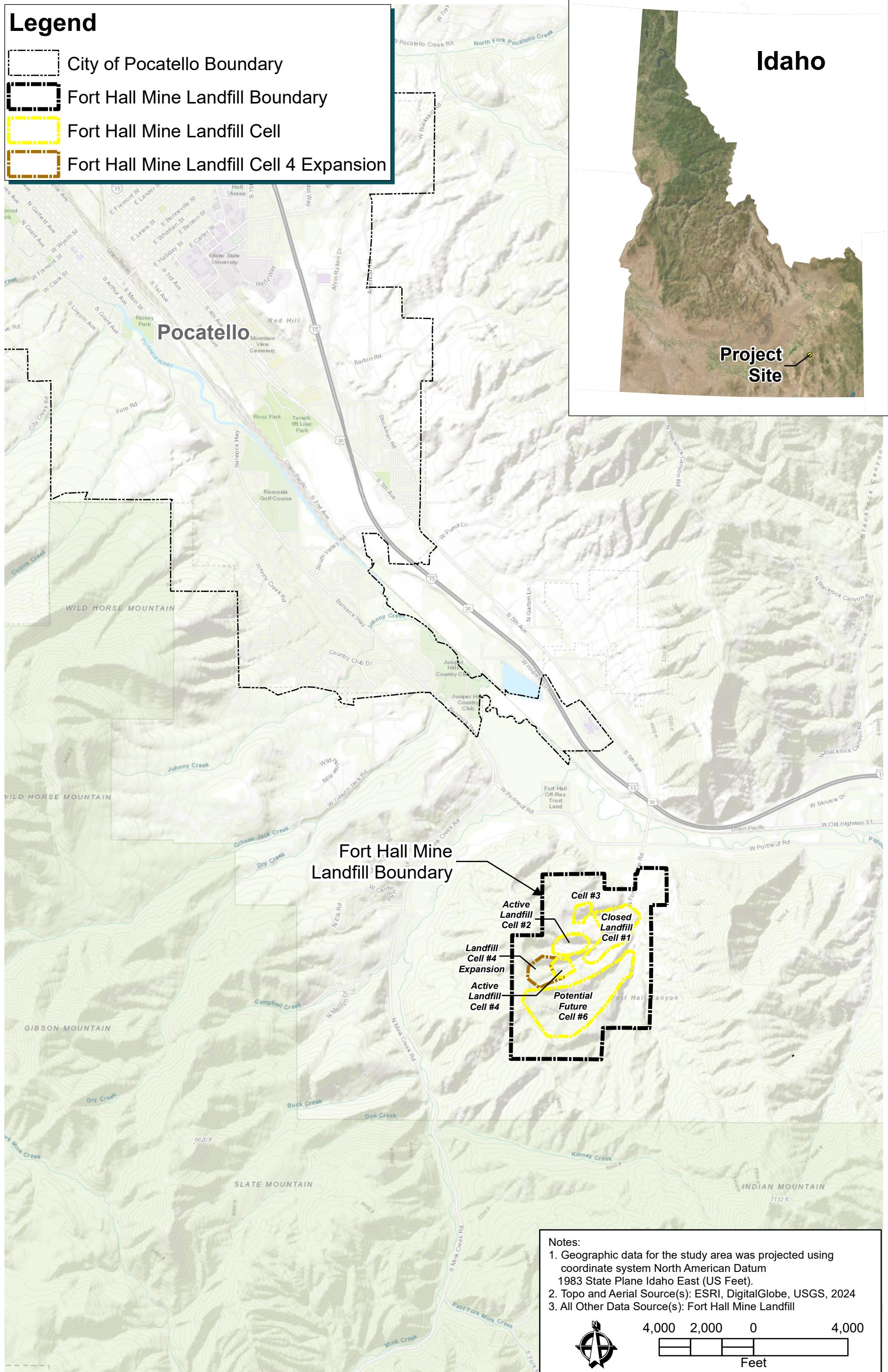
Lewis, G.C., and M.A. Fosberg. 1982. "Distribution and character of loess and loess soils in southeastern Idaho." *Idaho Bureau of Mines and Geology Bulletin* 26, 705–716.

Maxim. 2003. *Slope Stability Evaluation, Phase 1A Part 4, Fort Hall Canyon Landfill, Bannock County, Idaho*.

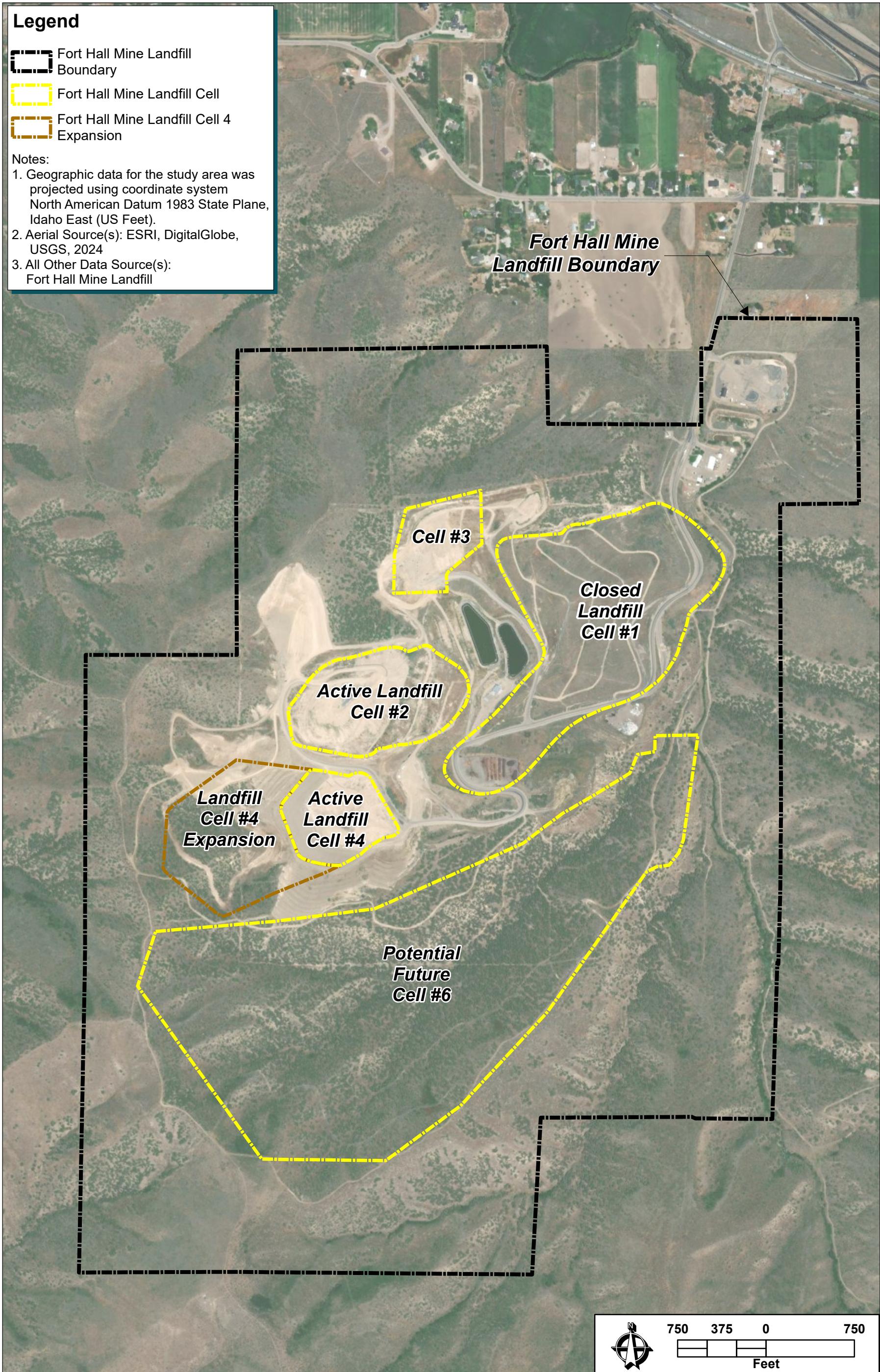
Maxim. 2001. *Preliminary Remedial Design Report, Fort Hall Canyon Landfill, Bannock County, Idaho*.

Maxim. 2000a. *Alternative Liner Demonstration, Phase 1A Part 2, Fort Hall Canyon Landfill, Bannock County, Idaho*.

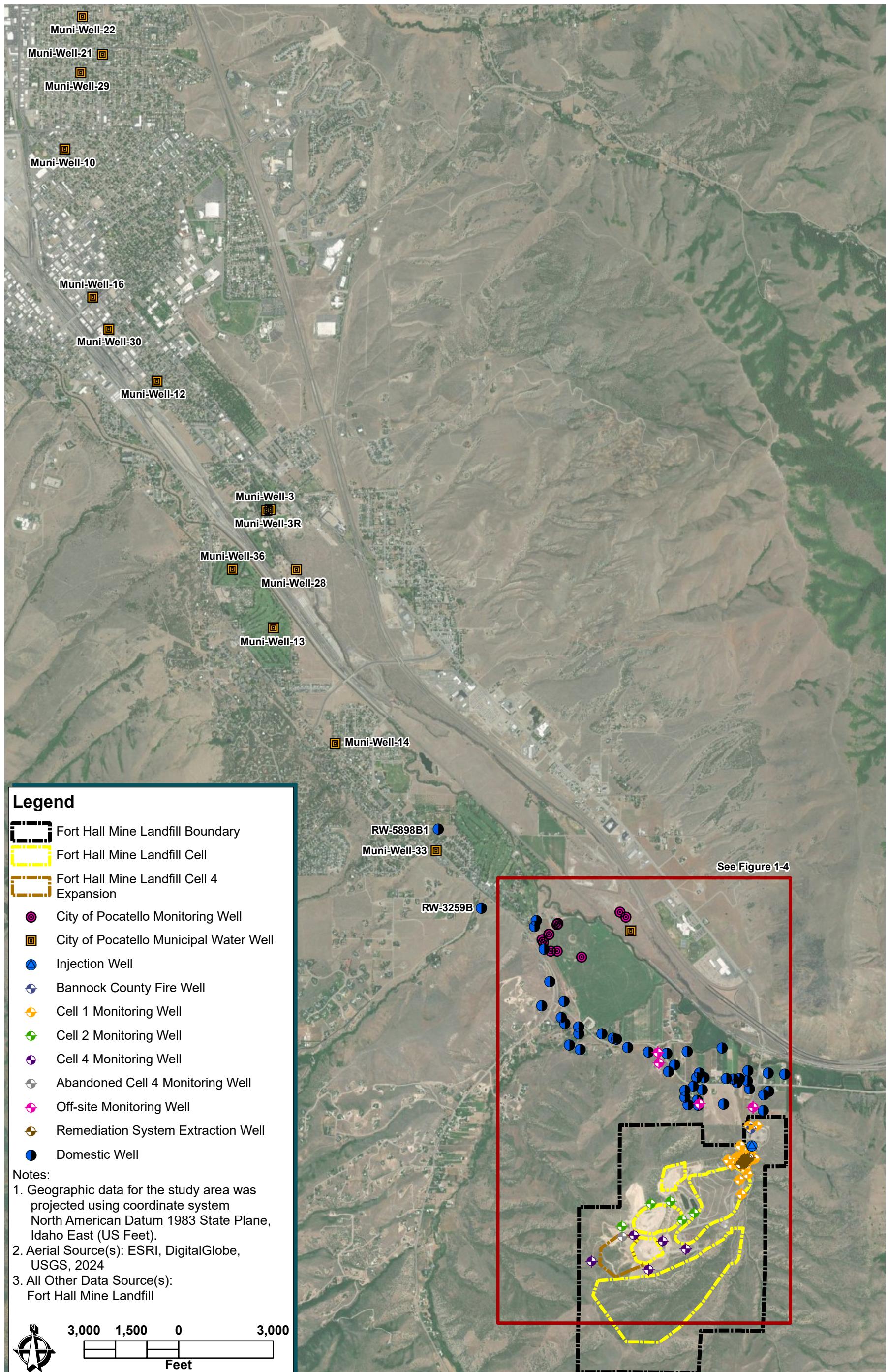
- Maxim. 2000b. *Final Phase 3 Remedial Investigation Report for the Fort Hall Canyon Landfill Area, Bannock County, Idaho.*
- Paragon. 2017. *Cell 2 Final Cover Demonstrations and Updated Closure/Post-Closure Plan.*
- Paragon. 2015. *Bannock County Solid Waste Department Landfill Gas System Record Drawings (August 2015) Detail Sheet.*
- Rodgers, D.W., S.P. Long, N. McQuarrie, W.D. Burgel, and C.F. Hersley. 2006. *Geologic Map of the Inkom Quadrangle, Bannock County, Idaho.* Idaho State University.
- Trimble, D.E. 1976. *Geology of the Michaud and Pocatello Quadrangles, Bannock and Power Counties, Idaho.* United States Geological Survey, 024-001-02811-5.
- Welhan, J., C. Meehan, and T. Reid. 1996. *The Lower Portneuf River Valley Aquifer: A Geologic/Hydrologic Model and its Implications for Wellhead Protection Strategies, EPA Wellhead Protection Demonstration Project and City of Pocatello Aquifer Geologic Characterization Project.*

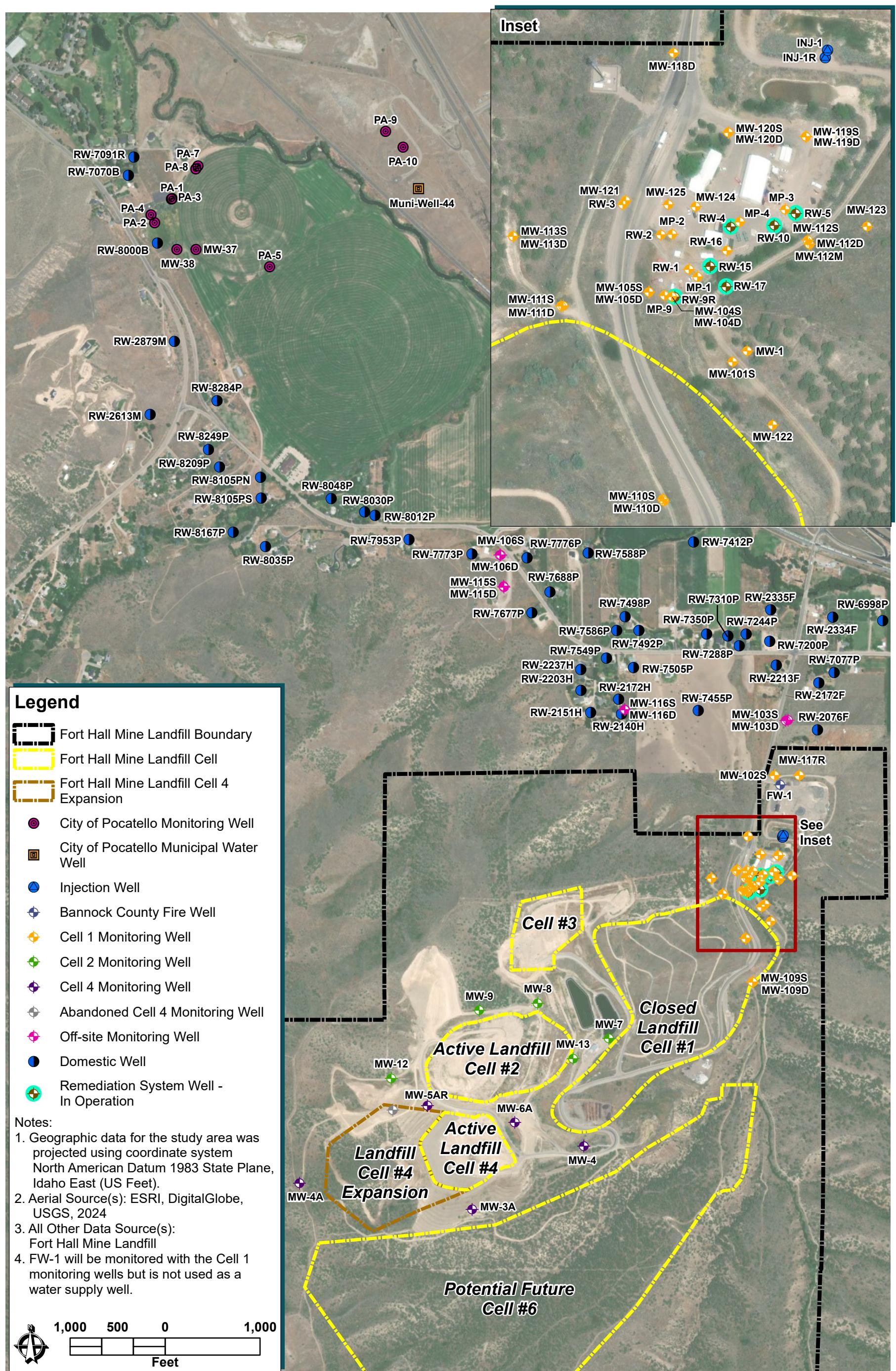

This page intentionally left blank.

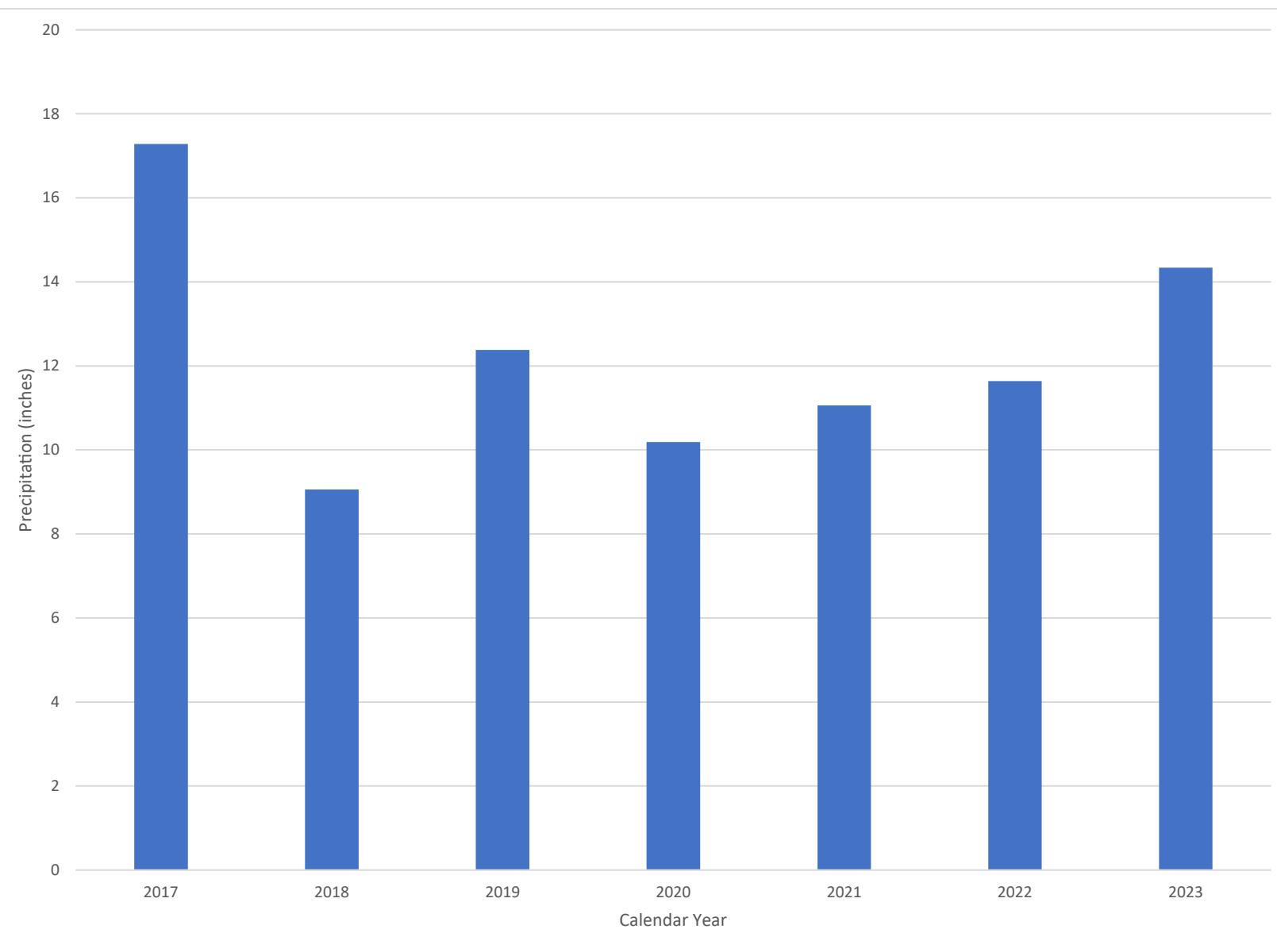
Figures



Legend

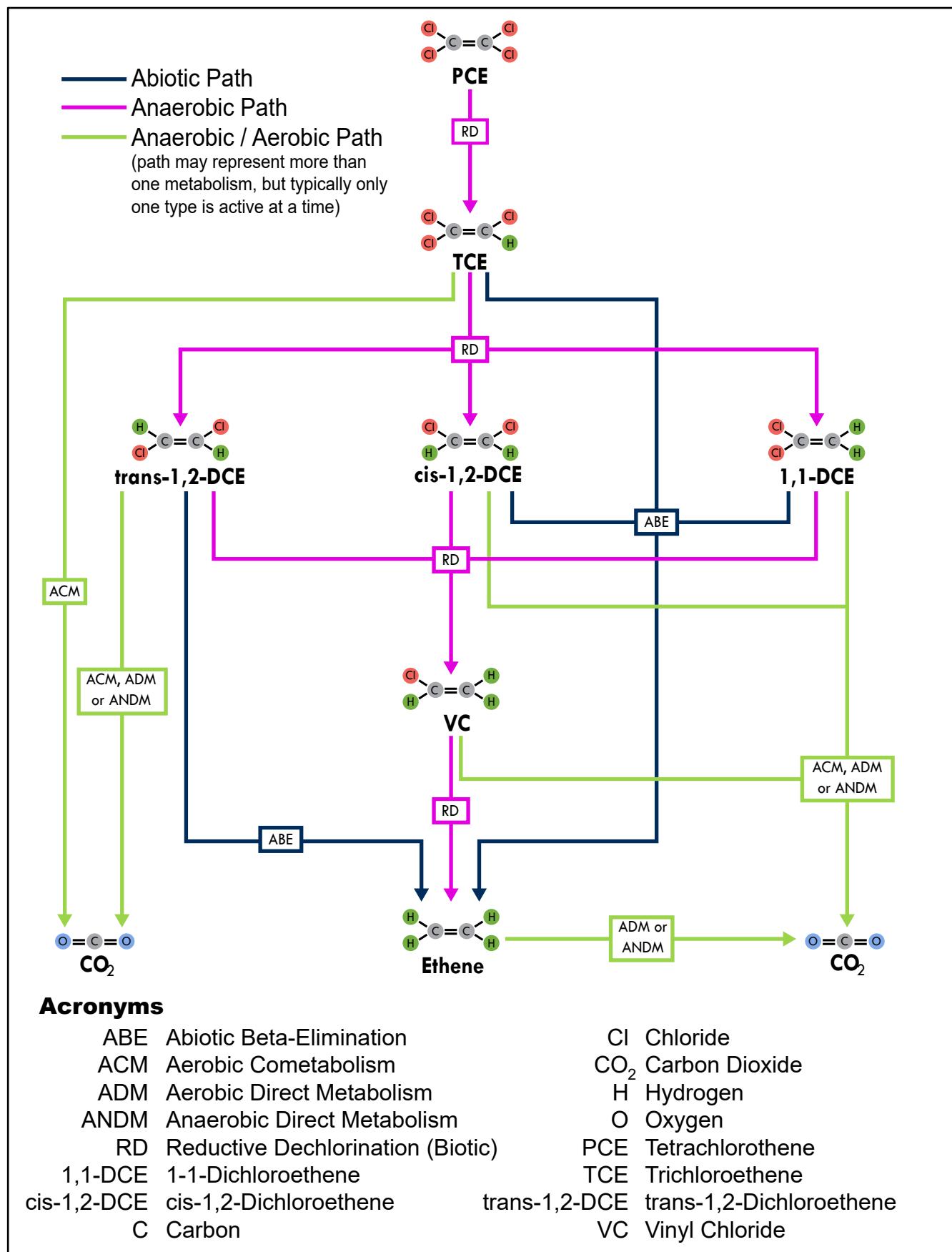

- City of Pocatello Boundary
- Fort Hall Mine Landfill Boundary
- Fort Hall Mine Landfill Cell
- Fort Hall Mine Landfill Cell 4 Expansion


Draft By: K. Scheller Date: 01/22/2024 | Check By: D. Savage Date: 01/23/2024 | Update By: _____ Date: _____ | Backcheck By: _____ Date: _____

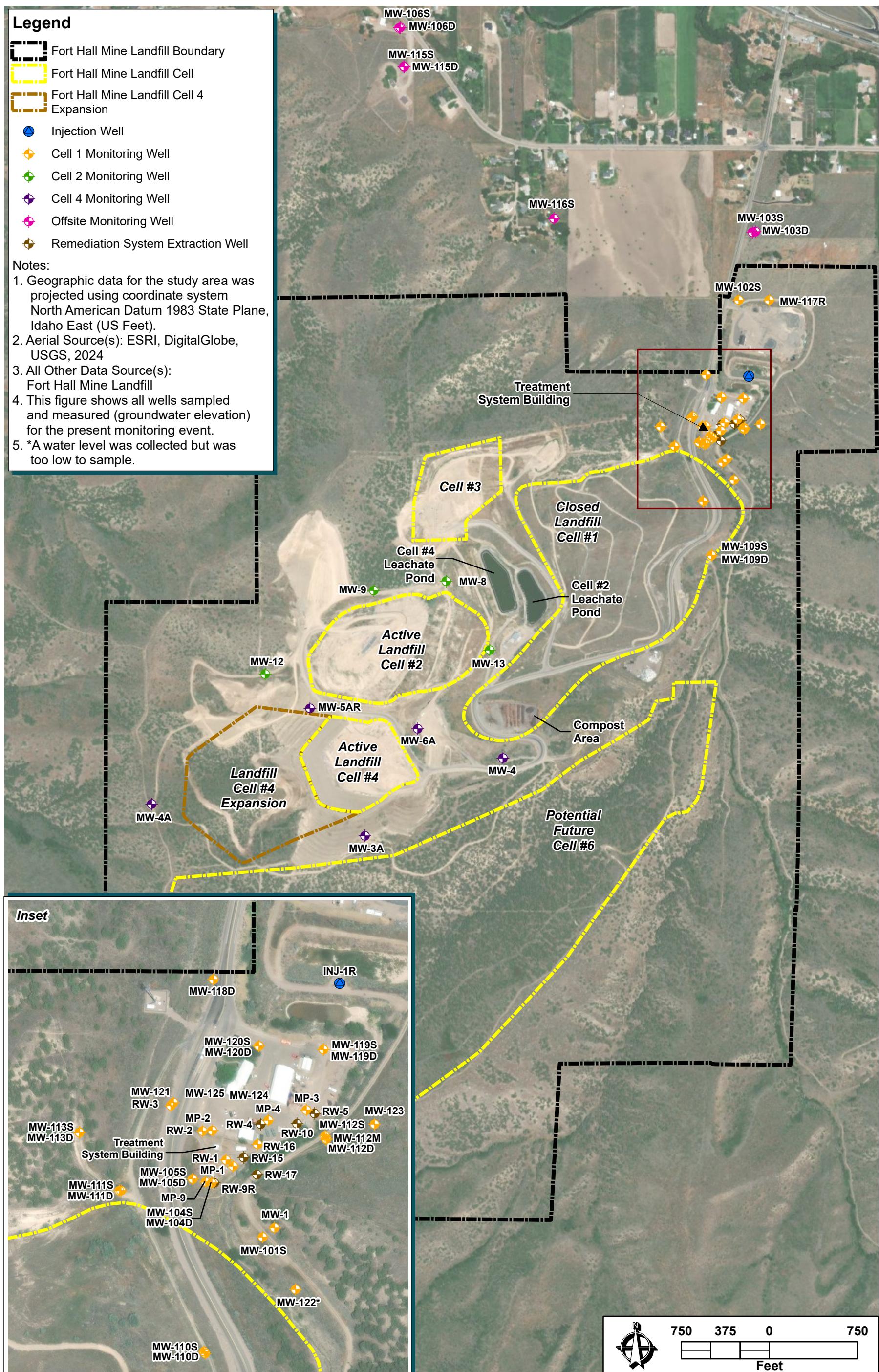


Draft By: K. Scheller Date: 01/22/2024 | Check By: D. Savage Date: 01/23/2024 | Update By: _____ Date: _____ | Backcheck By: _____ Date: _____

Draft By: K. Scheller Date: 02/12/2024 | Check By: E. Ehret Date: 02/12/2024 | Update By: Date: | Backcheck By: Date: |



Draft By: K. Scheller Date: 03/11/2024 | Check By: C. Scheil Date: 03/11/2024 | Update By: _____ Date: _____ | Backcheck By: _____ Date: _____



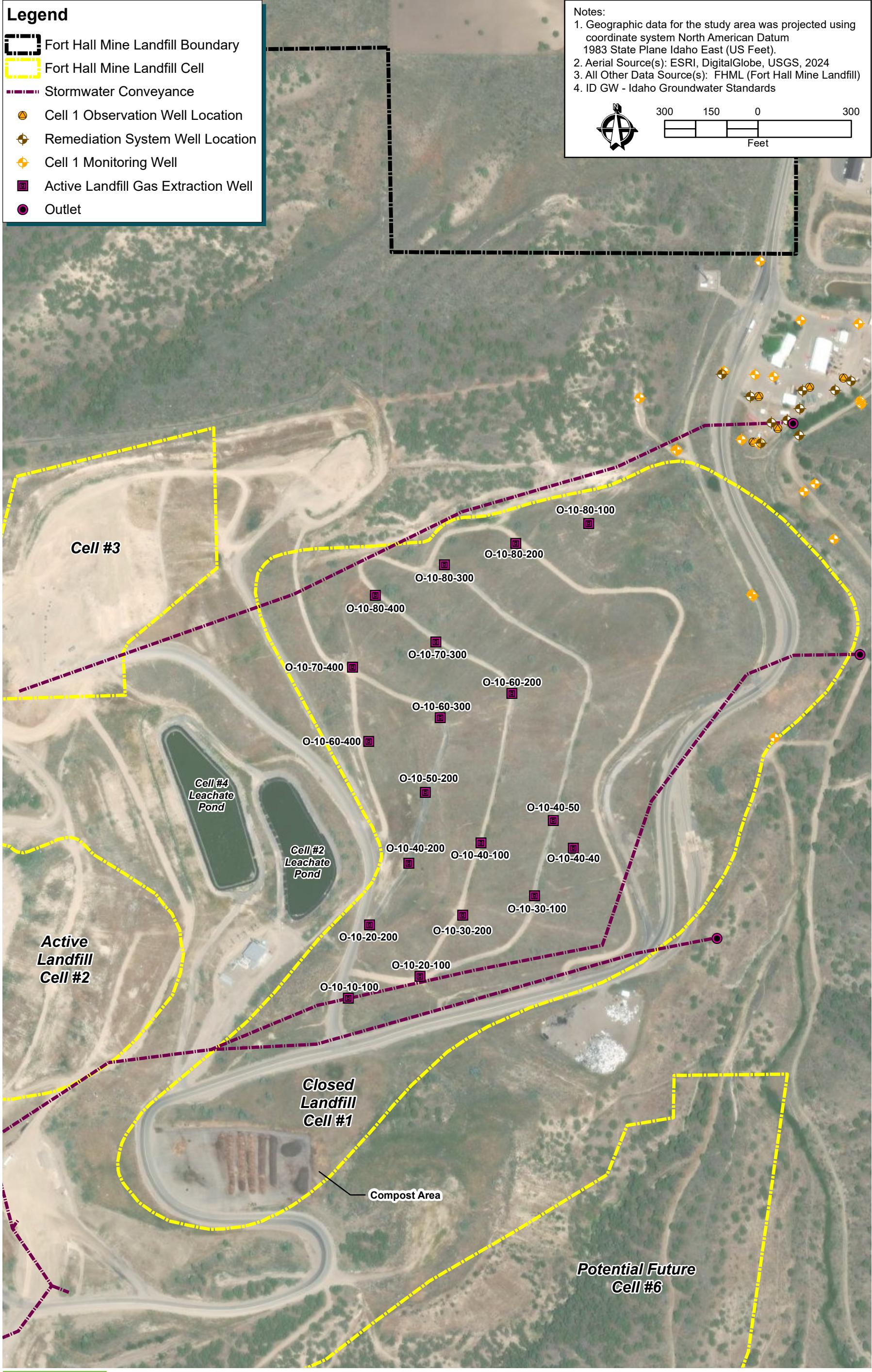
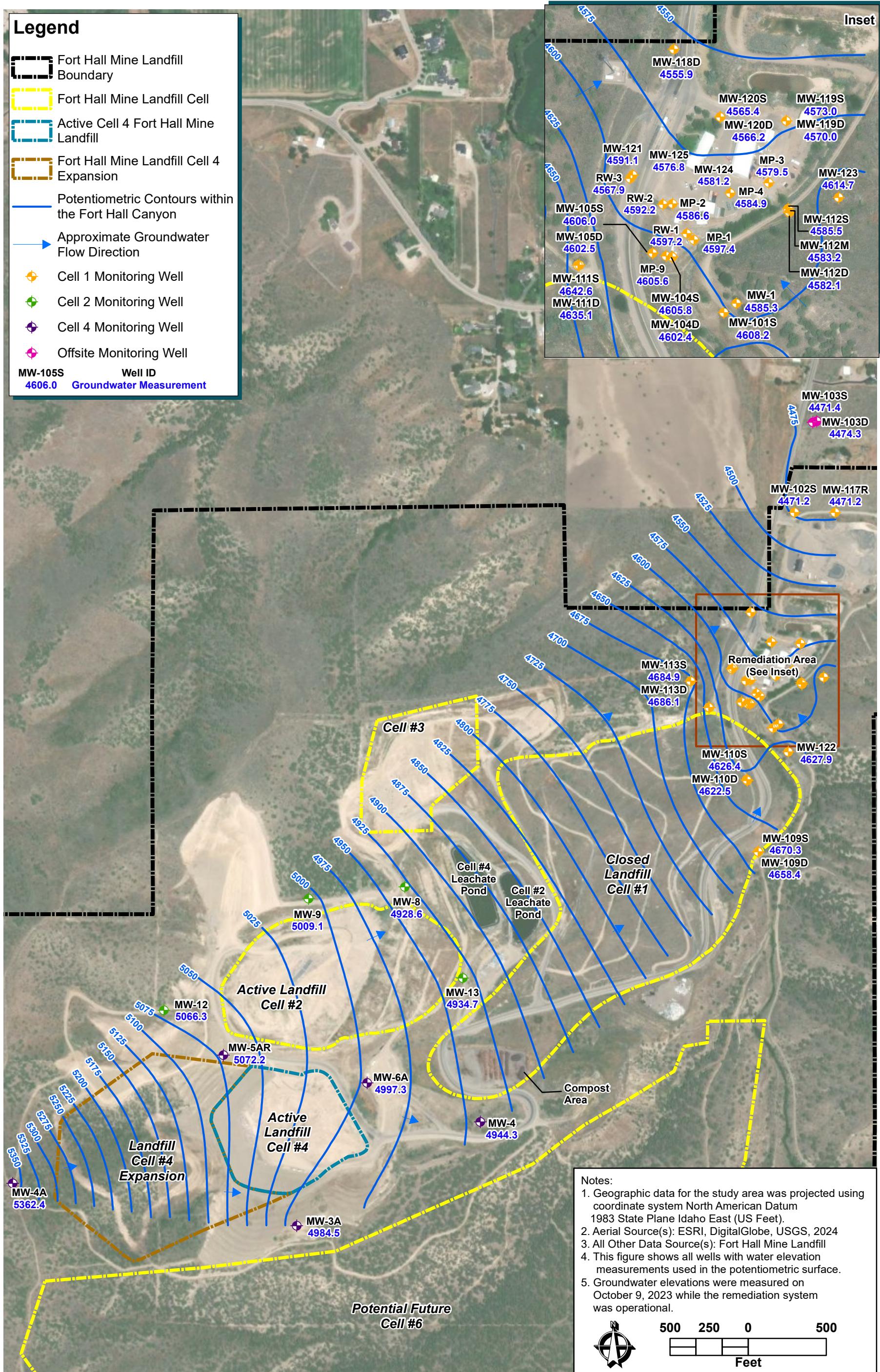
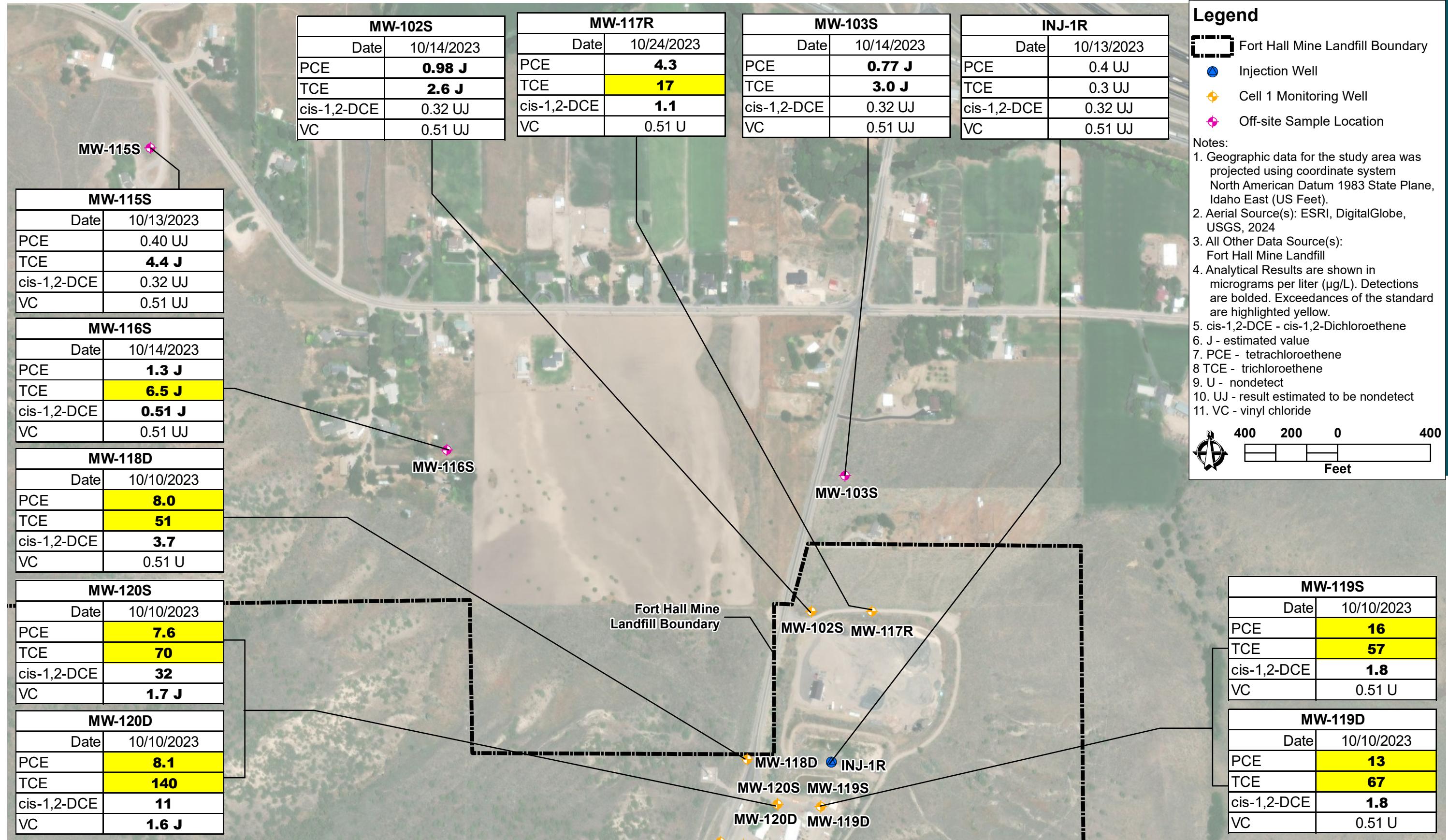
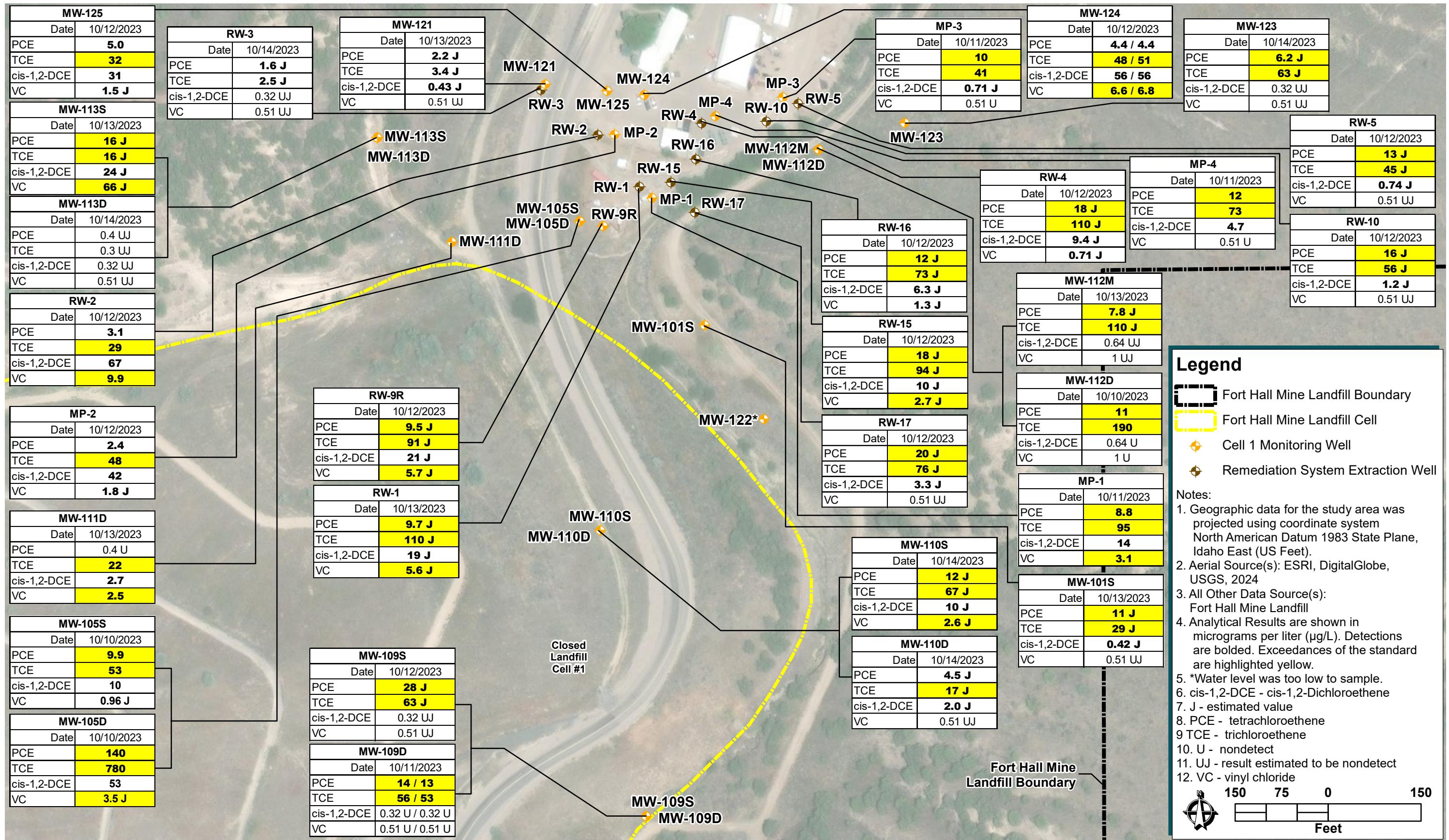

2023 Fall Semiannual Cell 1, 2 and 4 Groundwater Monitoring
and Remediation System Operation and Maintenance Report
Fort Hall Mine Landfill, Bannock County, Idaho

Figure 1-5
Total Precipitation by Year

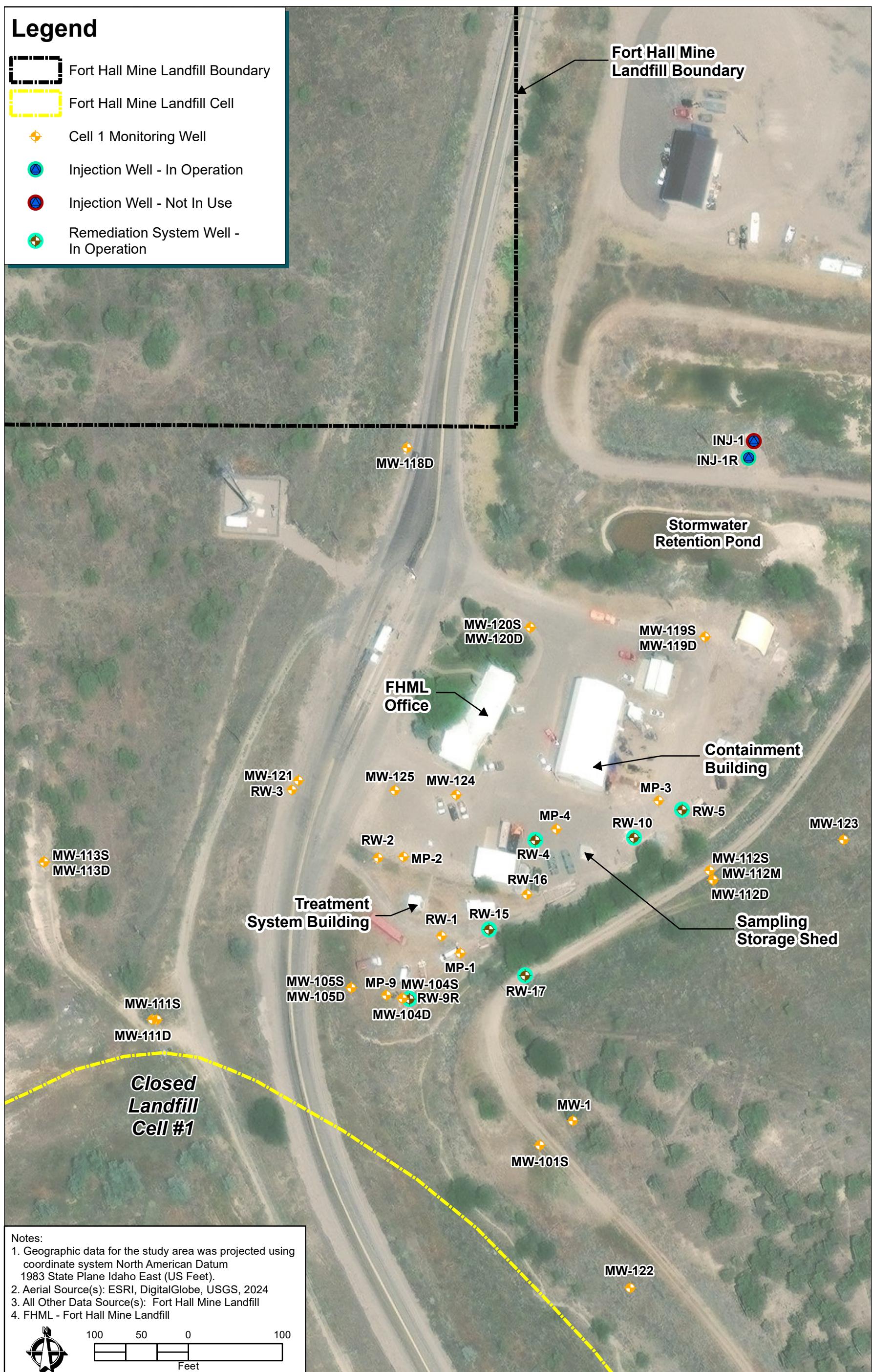


Draft By: K. Scheller Date: 01/22/2024 | Check By: D. Savage Date: 02/27/2024 | Update By: K. Scheller Date: 02/28/2024 | Backcheck By: _____ Date: _____

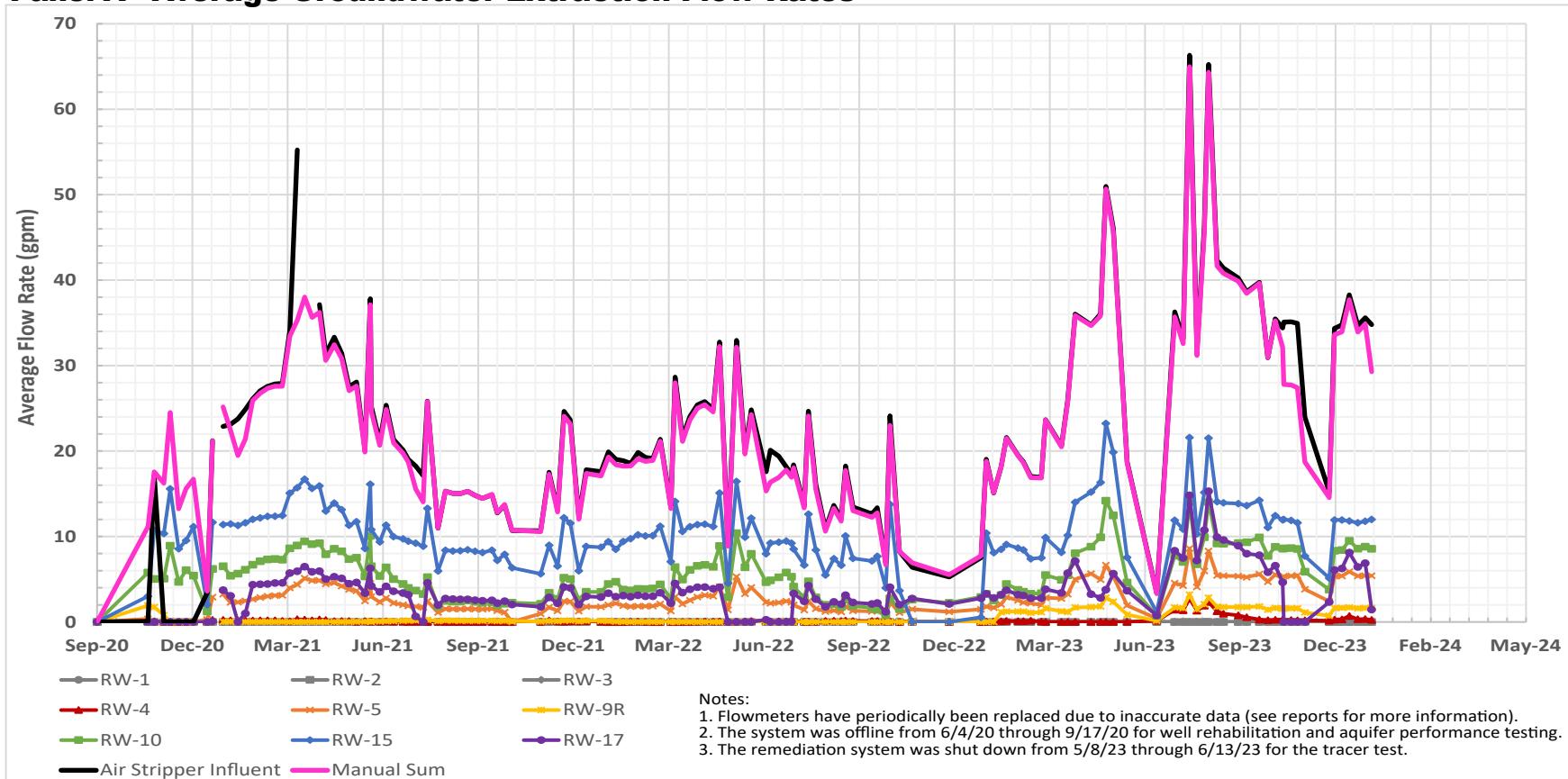



Draft By: K. Scheller Date: 01/24/2024 | Check By: D. Savage Date: 01/29/2024 | Update By: _____ Date: _____ | Backcheck By: _____ Date: _____

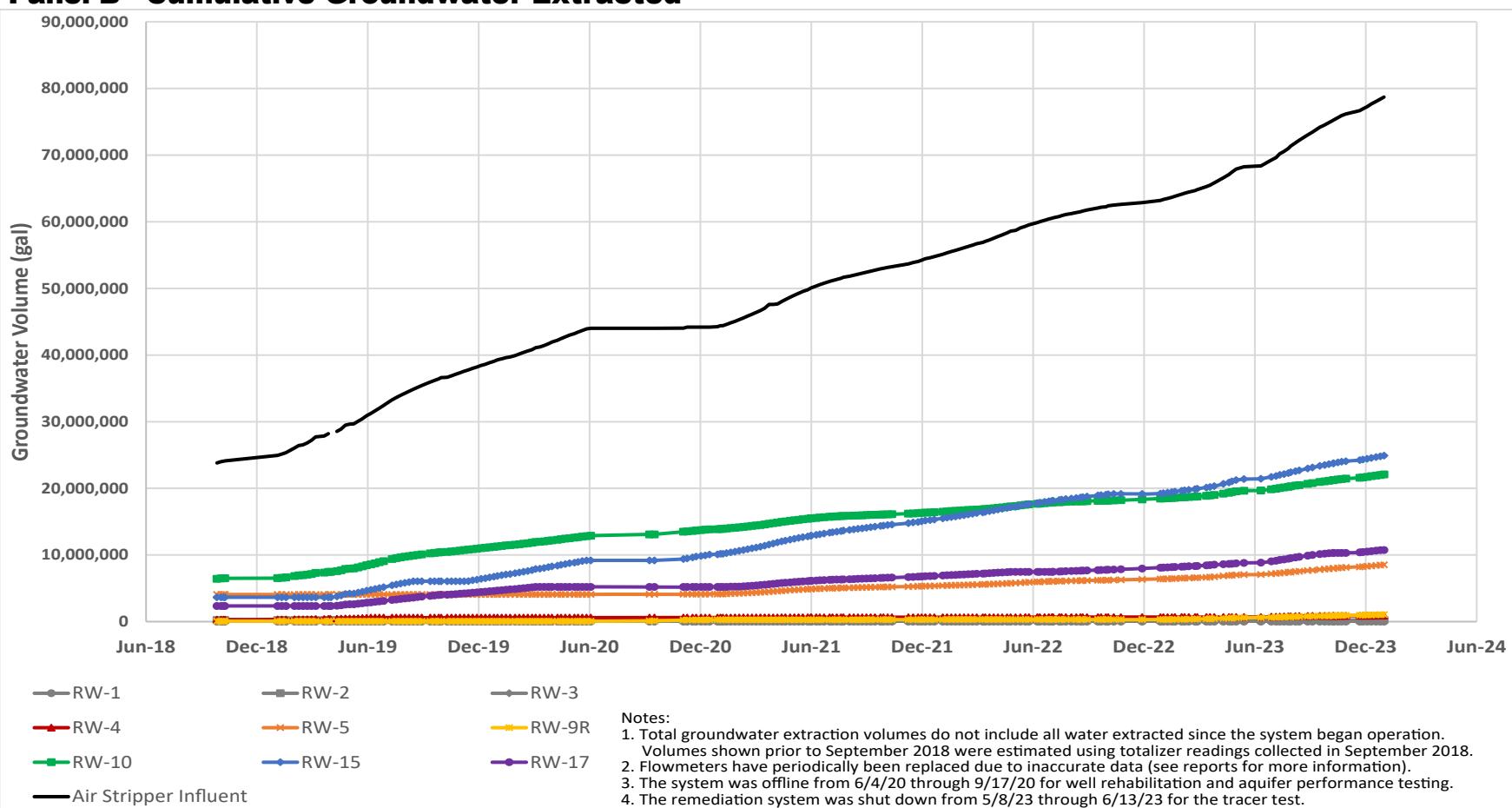
Draft By: K. Scheller Date: 02/12/2024 | Check By: E. Ehret Date: 02/12/2024 | Update By: _____ Date: _____ | Backcheck By: _____ Date: _____



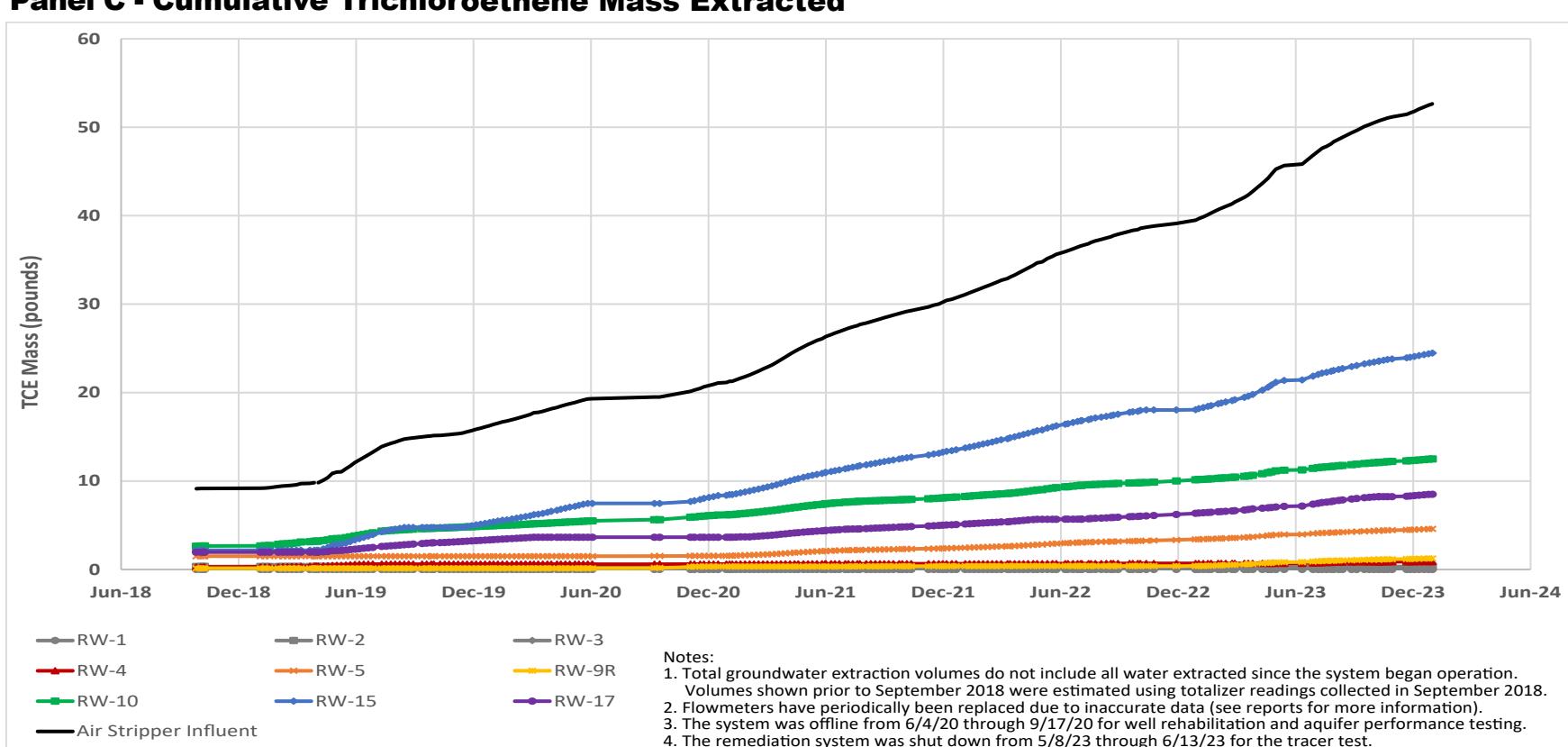
Draft By: K. Scheller Date: 01/24/2024 | Check By: D. Savage Date: 01/24/2024 | Update By: K. Scheller Date: 01/30/2024 | Backcheck By: D. Savage Date: 01/31/2024


Legend

- Fort Hall Mine Landfill Boundary
- Fort Hall Mine Landfill Cell
- Cell 1 Monitoring Well
- Injection Well - In Operation
- Injection Well - Not In Use
- Remediation System Well - In Operation



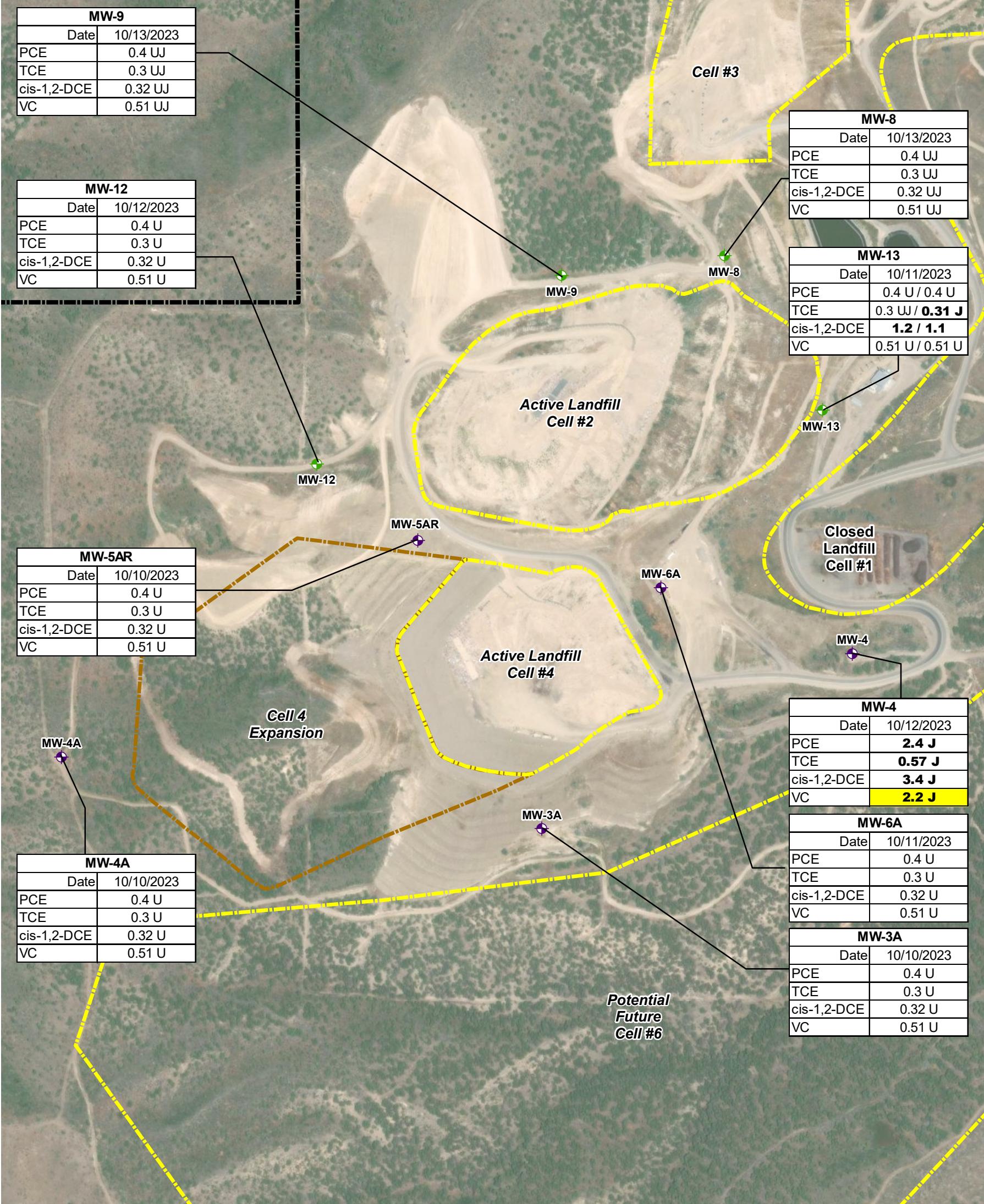
Draft By: K. Scheller Date: 01/24/2024 | Check By: E. Ehret Date: 02/12/2024 | Update By: K. Scheller Date: 02/12/2024 | Backcheck By: _____ Date: _____


Panel A - Average Groundwater Extraction Flow Rates

Panel B - Cumulative Groundwater Extracted

Panel C - Cumulative Trichloroethene Mass Extracted

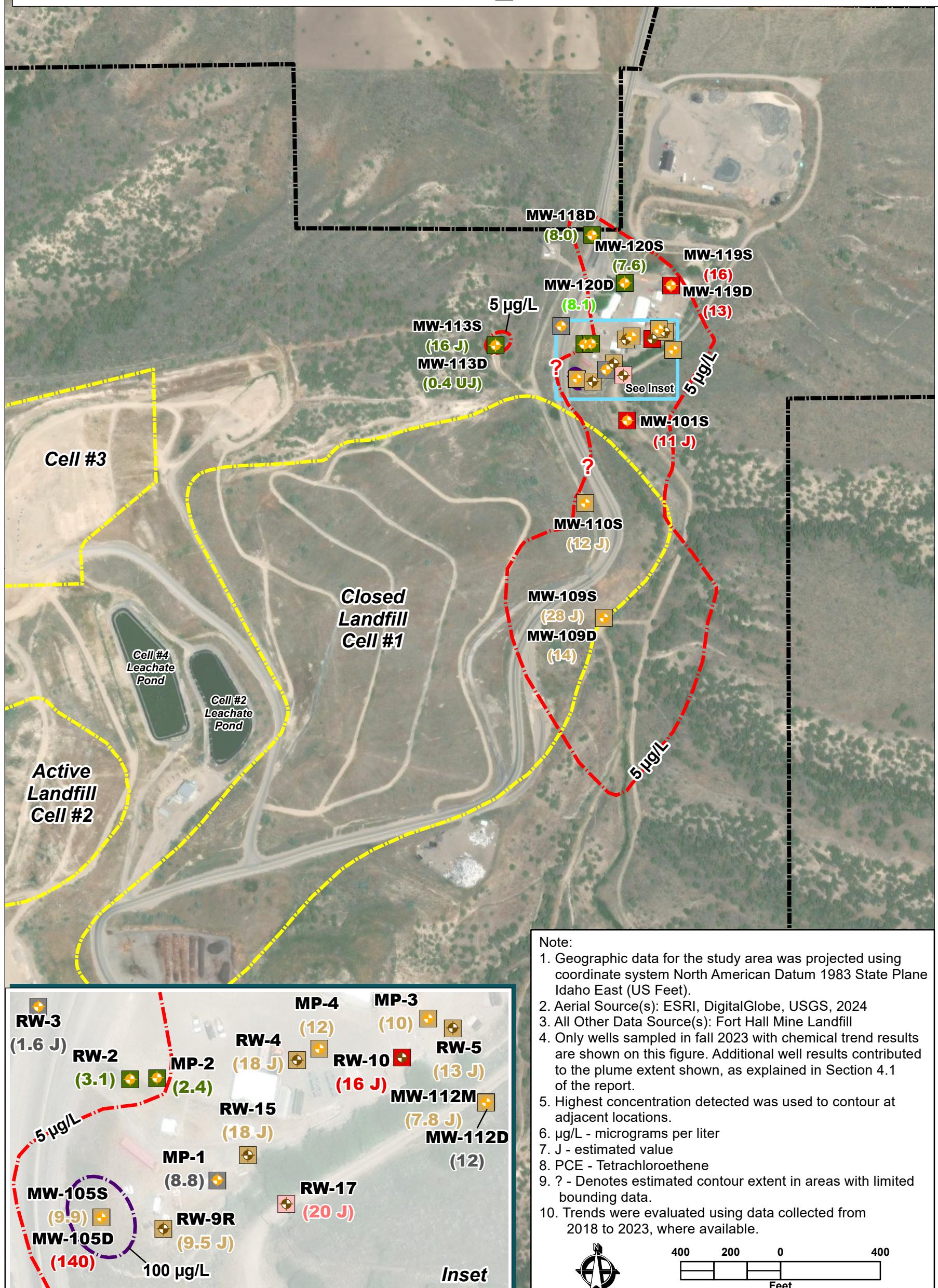
Draft By: K. Scheller Date: 01/24/2024 | Check By: D. Savage Date: 01/29/2024 | Update By: K. Scheller Date: 01/30/2024 | Backcheck By: D. Savage Date: 01/31/2024

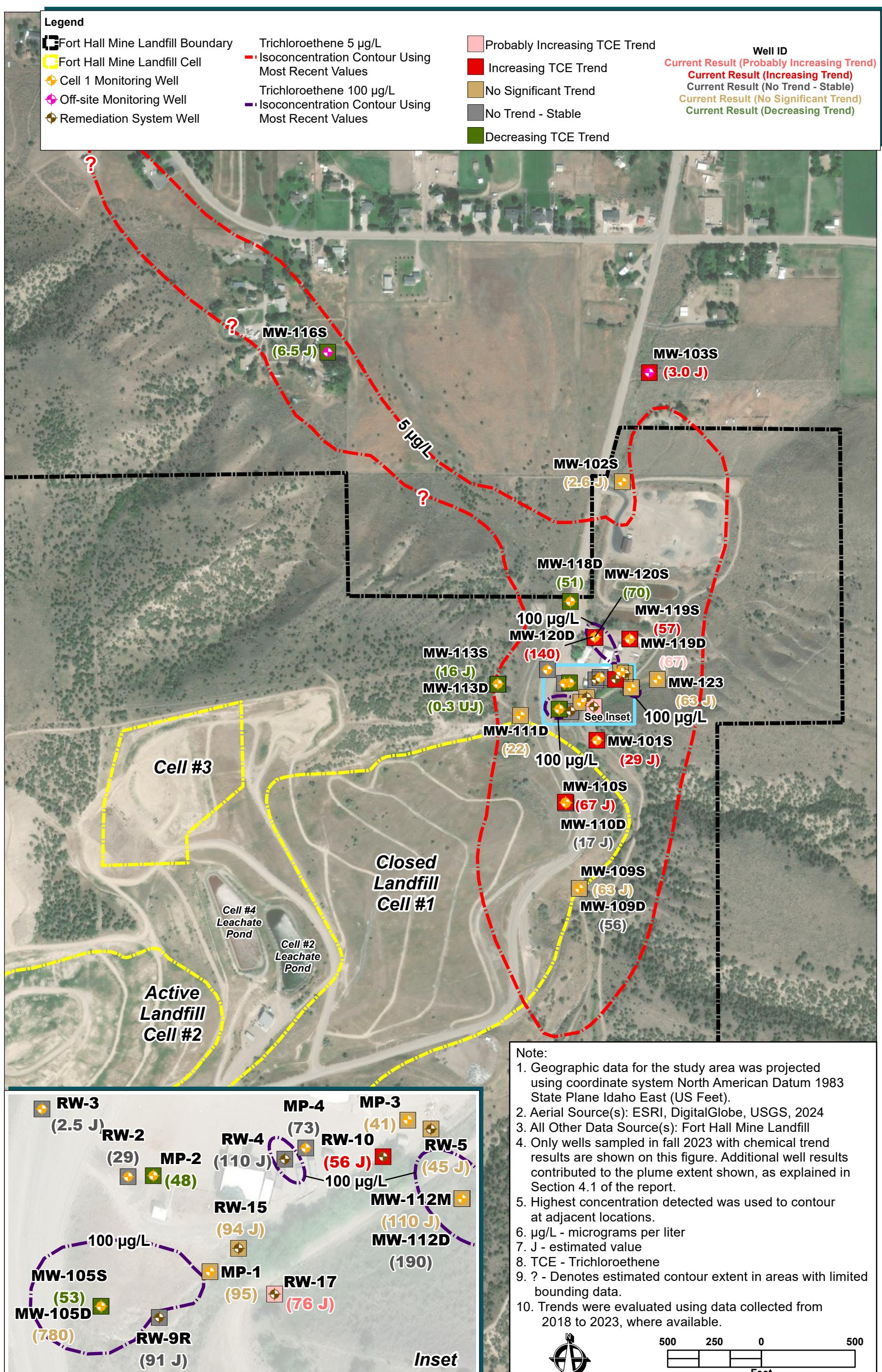

Legend

- Fort Hall Mine Landfill Boundary
- Fort Hall Mine Landfill Cell
- Fort Hall Mine Landfill Cell 4 Expansion
- Cell 2 Monitoring Well
- Cell 4 Monitoring Well

Notes:

- Geographic data for the study area was projected using coordinate system North American Datum 1983 State Plane, Idaho East (US Feet).
- Aerial Source(s): ESRI, DigitalGlobe, USGS, 2024
- All Other Data Source(s): Fort Hall Mine Landfill
- Analytical Results are shown in micrograms per liter (µg/L). Detections are bolded. Exceedances of the standard are highlighted yellow.
- cis-1,2-DCE - cis-1,2-dichloroethene
- J - estimated value
- PCE - tetrachloroethene
- TCE - trichloroethene
- U - nondetect
- UJ - result estimated to be nondetect
- VC - vinyl chloride


400 200 0 400
Feet


Draft By: K. Scheller Date: 01/24/2024 | Check By: D. Savage Date: 01/24/2024 | Update By: K. Scheller Date: 01/30/2024 | Backcheck By: D. Savage Date: 01/31/2024

Legend

Fort Hall Mine Landfill Boundary	Tetrachloroethene 100 µg/L	Probably Increasing PCE Trend	Well ID
Fort Hall Mine Landfill Cell	Isoconcentration Contour Using Most Recent Values	Increasing PCE Trend	Current Result (Probably Increasing Trend)
Tetrachloroethene 5 µg/L	Cell 1 Monitoring Well	No Significant Trend	Current Result (Increasing Trend)
Isoconcentration Contour Using Most Recent Values	Remediation System Well	No Trend - Stable	Current Result (No Trend - Stable)
		Probably Decreasing PCE Trend	Current Result (No Significant Trend)
		Decreasing PCE Trend	Current Result (Probably Decreasing Trend)
			Current Result (Decreasing Trend)

Draft By: K. Scheller Date: 02/02/2024 | Check By: E. Ehret Date: 02/05/2024 | Update K. Scheller Date: 02/12/2024 | Backcheck By: E. Ehret Date: 02/13/2024

Draft By: K. Scheller Date: 02/02/2024 | Check By: E. Ehret Date: 03/11/2024 | Update K. Scheller Date: 03/11/2024 | Backcheck By: Date:

Tables

Table 2-1
Summary of Sample Locations and Analysis Fall 2023

Well ID	Water Levels	Field parameters ¹	Appendix I				Appendix II										Geochemical/Microbial					
			VOCs		Metals ²		SVOCs		O/C Pest ³	O/P Pest	Chlorinated Herbicides	PCBs ³	Dioxins/ Furans	Mercury	Cyanide	Total Sulfide	Anions ⁴	Dissolved Gases	TOC	Ferrous Iron	CSIA	Dhc & genes
			8260D	8011	6020B/ 6010C	8270E	8270E SIM	8081B	8141A	8321B	8082A	8290	7470A	SM4500-CN-E	SM 4500S-2	9056A	RSK-175	9060A	HACH 8146	U of O	M.I.	
Cell 1 (Low-flow sampling method)																						
MW-1	1																					
MW-101S	1	1	1	1																		
MW-102S	1	1	1	1																		
MW-104D	1																					
MW-104S	1																					
MW-105D	1	1	1	1																		
MW-105S	1	1	1	1																		
MW-109D	1	1	1	1																		
MW-109S*	1	1	1	1																		
MW-110D*	1	1	1	1																		
MW-110S*	1	1	1	1																		
MW-111D	1	1	1	1																		
MW-111S	1																					
MW-112D	1	1	1	1																		
MW-112M*	1	1	1	1																		
MW-112S	1																					
MW-113D*	1	1	1	1																		
MW-113S	1	1	1	1																		
MW-118D	1	1	1	1	D												1	1	1	1	1	
MW-119D	1	1	1	1	D												1	1	1	1	1	
MW-119S	1	1	1	1	D												1	1	1	1	1	
MW-120D	1	1	1	1	D												1	1	1	1	1	
MW-120S	1	1	1	1	D												1	1	1	1	1	
MW-121	1	1	1	1	T																	
MW-123*	1	1	1	1																		
MW-124	1	1	1	1	D, T												1	1	1	1	1	
MW-125	1	1	1	1	D, T												1	1	1	1	1	
MP-1*	1	1	1	1																		
MP-2	1	1	1	1	D, T												1	1	1	1	1	
MP-3*	1	1	1	1																		
MP-4*	1	1	1	1																		
MP-9	1																					
Cell 1 (HydraSleeve method only)																						
MW-117R	1	1	1																			
Remediation System (Low-flow sampling method)																						
RW-1	1	1	1															1	1			
RW-2	1	1	1		D, T												1	1	1	1	1	
RW-3	1	1	1	1																		
RW-16*	1	1	1	1																		
Remediation System (Grab Sampling)																						
INJ-1R				1	1	T	1	1	1	1	1	1	1	1	1	1	1					
RW-4				1	1																	
RW-5				1	1																	
RW-9R				1	1																	
RW-10				1	1																	
RW-15				1	1																	
RW-17				1	1																	

Table 2-1
Summary of Sample Locations and Analysis Fall 2023

Well ID	Water Levels	Field parameters ¹	Appendix I				Appendix II										Geochemical/Microbial					
			VOCs		Metals ²		SVOCs		O/C Pest ³	O/P Pest	Chlorinated Herbicides	PCBs ³	Dioxins/ Furans	Mercury	Cyanide	Total Sulfide	Anions ⁴	Dissolved Gases	TOC	Ferrous Iron	CSIA	Dhc & genes
			8260D	8011	6020B/ 6010C	8270E	8270E SIM	8081B	8141A	8321B	8082A	8290	7470A	SM4500-CN-E	SM 4500S-2	9056A	RSK-175	9060A	HACH 8146	U of O	M.I.	
Offsite (Low-flow sampling method)																						
MW-103D	1	1																				
MW-103S	1	1		1																		
MW-106D	1																					
MW-106S	1																					
MW-115D	1																					
MW-115S*	1	1	1																			
MW-116S		1	1																			
Cell 2 (Low-flow sampling method)																						
MW-12	1	1	1	1	T	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		
MW-13	1	1	1	1	T	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		
MW-8	1	1	1	1	T	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		
MW-9	1	1	1	1	T	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		
Cell 4 (Low-flow sampling method)																						
MW-3A	1	1	1	1	1	T																
MW-4A	1	1	1	1	1	T																
MW-4	1	1	1	1	1	T																
MW-5AR	1	1	1	1	1	T																
MW-6A	1	1	1	1	1	T																

Notes:

¹ Field parameters include pH, oxidation-reduction potential, turbidity, dissolved oxygen, specific conductivity, and temperature

² D = dissolved, T = total. Dissolved metals were field filtered

³ O/C Pest and PCBs are collected in the same bottle

⁴ Anions list includes chloride, sulfate, and bromide

* Locations were sampled via HydraSleeve method in addition to low-flow

dry = water level too low for measurement

VOCs = volatile organic compounds

O/C Pest = organochlorine pesticides

PCBs = polychlorinated biphenyls

O/P Pest = organophosphorus pesticides

SVOCs = semivolatile organic compounds

Table 2-2
Well Construction Summary

Location						Construction						Sampling - General		Low-Flow Sampling Calculations		
Well Group	Well ID	Geologic Zone	Easting (x-coordinate)	Northing (y-coordinate)	Elevation (ft msl)	Casing Elevation (ft msl)	Stickup Height (ft)	Screen Start (ft bgs)	Screen End (ft bgs)	Well Diameter (inches)	Total Well Depth (ft bgs)	Sample Type	Target Sample Depth (ft btoc)	Allowable Drawdown (ft)	Sample Tubing Diameter (in)	Minimum Purge Volume (gal)
Cell 1	FW-1	Alluvium	603045.45	409431.82	4605.13	4607.50	2.37	200	430	6	430	NA	315	0.1	0.25	NA
Cell 1	MP-1	Starlight	602761.69	408352.38	4654.48	4656.68	2.20	60	100	4	100	Passive	83.5	0.3	0.25	NA
Cell 1	MP-2	Both	602701.14	408455.07	4653.60	4655.17	1.57	50	90	4	90	Portable Pump	70	0.1	0.25	0.7
Cell 1	MP-3	Starlight	602977.01	408513.44	4643.72	4643.23	-0.49	60	100	4	100	Passive	80.8	0.3	0.25	NA
Cell 1	MP-4	Starlight	602866.15	408483.99	4646.10	4645.64	-0.46	60	100	4	100	Passive	80.8	0.3	0.25	NA
Cell 1	MP-9	NA	602681.26	408307.11	4659.98	4663.05	3.07	65	70	2	70	NA	68	0.1	0.25	NA
Cell 1	MW-1	Shallow Starlight	602884.14	408171.01	4662.04	4664.90	2.86	77	97	--	97	NA	87	0.1	0.25	NA
Cell 1	MW-101S	Overburden	602849.09	408144.91	4664.25	4666.40	2.15	55	75	4	80	Passive	68.4	0.1	0.25	NA
Cell 1	MW-102S	Overburden	602985.40	409527.94	4591.95	4594.20	2.25	125	145	4	147	Dedicated Pump	136	0.1	0.25	1.2
Cell 1	MW-104D	Starlight	602701.80	408302.41	4659.09	4660.08	0.99	79	89	2	90	NA	84	0.1	0.25	NA
Cell 1	MW-104S	Overburden	602701.58	408302.37	4659.41	4660.22	0.81	47	67	2	69	NA	57	0.1	0.25	NA
Cell 1	MW-105D	Starlight	602648.19	408312.73	4661.94	4662.60	0.66	72	82	2	85	Dedicated Pump	77	2.0	0.25	1.0
Cell 1	MW-105S	Overburden	602647.98	408312.75	4661.76	4662.60	0.84	45	65	2	67	Dedicated Pump	55	0.1	0.25	0.5
Cell 1	MW-109D	Starlight	602755.03	407352.69	4717.98	4719.60	1.62	75	95	2	96	Passive	87.9	2.0	0.25	NA
Cell 1	MW-109S	Overburden	602754.98	407352.97	4717.64	4719.70	2.06	42	62	2	63	Passive	58.8	0.1	0.25	NA
Cell 1	MW-110D	Starlight	602682.88	407809.65	4745.80	4747.83	2.03	154	159	2	161	Passive	159.8	2.0	0.25	NA
Cell 1	MW-110S	Starlight	602679.68	407814.63	4745.53	4747.19	1.66	107.5	127.5	2	127	Passive	129.2	0.1	0.25	NA
Cell 1	MW-111D	Starlight	602441.43	408278.97	4697.63	4699.10	1.47	104	124	2	124	Dedicated Pump	114	2.0	0.25	1.2
Cell 1	MW-111S	Starlight	602436.53	408279.31	4697.17	4699.40	2.23	54	74	2	74	Bail (If Not DRY)	64	0.1	0.25	0.6
Cell 1	MW-112D	Starlight	603032.31	408428.91	4646.29	4648.21	1.92	93	103	2	100	Dedicated Pump	95	2.0	0.25	1.1
Cell 1	MW-112M	Shallow Starlight	603032.11	408428.81	4646.66	4648.22	1.56	66	76	2	76	Passive	73.8	1.0	0.25	NA
Cell 1	MW-112S	Shallow Starlight	603028.35	408438.57	4645.94	4647.52	1.58	41	61	2	61	Bail (If Not DRY)	51	0.1	0.25	0.5
Cell 1	MW-113D	Starlight	602319.67	408447.93	4709.59	4711.71	2.12	115	135	2	136	Passive	128.4	1.0	0.25	NA
Cell 1	MW-113S	Starlight	602319.75	408447.84	4709.70	4711.58	1.88	74	94	2	96	Dedicated Pump	82	3.0	0.25	1.2
Cell 1	MW-117R	Shallow Starlight	603245.33	409527.52	4580.47	4583.10	2.63	113	123	2	126	Bail (If Not DRY)	118	0.1	0.25	1.0
Cell 1	MW-118D	Starlight	602707.80	408888.74	4640.08	4641.50	1.42	82	102	2	103	Dedicated Pump	88	0.1	0.25	0.7
Cell 1	MW-119D	Starlight	603024.86	408687.13	4639.85	4641.50	1.65	90	100	2	101	Dedicated Pump	92	1.0	0.25	0.9
Cell 1	MW-119S	Shallow Starlight	603024.89	408687.06	4639.82	4641.10	1.28	70	80	2	80	Dedicated Pump	72	0.3	0.25	0.6
Cell 1	MW-120D	Shallow Starlight	602838.95	408697.20	4642.45	4643.50	1.05	90	100	2	99	Dedicated Pump	92	0.3	0.25	0.8
Cell 1	MW-120S	Starlight	602838.70	408697.16	4642.42	4643.50	1.08	70	80	2	80	Dedicated Pump	79	0.1	0.25	0.7
Cell 1	MW-121	Starlight	602592.09	408533.57	4651.78	4651.50	-0.28	67	87	2	86	Portable Pump	77	0.1	0.25	0.7
Cell 1	MW-122	Starlight	602945.48	407993.05	4675.92	4679.06	3.14	38	48	4	136	Bail (If Not DRY)	43	0.1	0.25	0.4
Cell 1	MW-123	Alluvium	603172.68	408470.89	4651.04	4653.68	2.64	67.3	71.3	4	112	Passive	73.9	0.1	0.25	NA
Cell 1	MW-124	Starlight	602759.92	408518.61	4645.97	4645.29	-0.68	60	90	6	96	Portable Pump	75	0.1	0.25	0.8
Cell 1	MW-125	Starlight	602694.76	408523.14	4647.08	4646.43	-0.65	60	90	4	98	Portable Pump	75	0.1	0.25	0.7
Cell 1	RW-1	Alluvium	602744.15	408367.93	4654.27	4655.40	1.13	60	100	6	100	Portable Pump	80	0.1	0.25	0.8
Cell 1	RW-16	Both	602835.21	408412.40	4651.23	4653.50	2.27	43	103	6	103	Portable Pump	73	0.1	0.25	0.8
Cell 1	RW-2	Starlight	602676.91	408451.36	4653.81	4655.23	1.42	70	90	6	90	Portable Pump	80	0.1	0.25	0.8
Cell 1	RW-3	Starlight	602585.05	408523.94	4653.23	4652.61	-0.62	50	90	6	90	Portable Pump	70	0.1	0.25	0.7
Cell 2	MW-12	Alluvium	598951.47	406337.29	5225.05	5227.80	2.75	168.5	208.5	4	193	Dedicated Pump	189	1.0	0.25	2.1
Cell 2	MW-13	Alluvium	600863.67	406542.90	5008.62	5010.70	2.08	157	177	2	179	Dedicated Pump	167	2.5	0.25	1.7
Cell 2	MW-7	Alluvium	601380.90	406847.70	4953.16	4953.90	0.74	169.5	189.5	4	200	NA	NA	NA	NA	NA
Cell 2	MW-8	Alluvium	600494.07	407129.37	5121.20	5123.00	1.80	189.5	229.5	4	232	Dedicated Pump	210	0.4	0.25	1.9
Cell 2	MW-9	Alluvium	599877.48	407052.69	5191.52	5193.50	1.98	229.5	269.5	4	270	Dedicated Pump	250	2.0	0.25	3.3
Cell 4	MW-3A	Alluvium	599802.12	404955.76	5265.23	5267.90	2.67	379	399	4	399	Dedicated Pump	389	4.0	0.25	5.6
Cell 4	MW-4	Alluvium	600977.01	405619.70	5074.22	5075.90	1.68	141	181	4	178	Dedicated Pump	161	1.0	0.25	1.9
Cell 4	MW-4A	Starlight	597985.08	405227.62	5502.49	5505.20	2.71	179	199	4	199	Dedicated Pump	189	0.3	0.25	1.7
Cell 4	MW-5AR	Alluvium	599343.78	406055.29	5223.36	5225.83	2.47	195	215	4	298	Dedicated Pump	205	0.5	0.25	1.9
Cell 4	MW-6A	Alluvium	600252.50	405869.49	5084.57	5088.00	3.43	145.4	165.4	4	166	Dedicated Pump	155	2.5	0.25	2.9
Offsite	MW-103D	Overburden	603103.39	410107.66	4557.56	4560.10	2.54	173.5	183.5	4	181	NA	179	0.1	0.25	NA
Offsite	MW-103S	Overburden	603129.08	410112.39	4558.35	4560.00	1.65	90	110	4	114	Dedicated Pump	105	0.1	0.25	0.9
Offsite	MW-106D	Overburden	600093.80	411850.82	4514.18	4516.10	1.92	89	99	4	99	NA	94	0.1	0.25	NA
Offsite	MW-106S	Overburden	600104.55	411853.60	4514.19	4516.90	2.71	55	75	4	78	NA	65	0.1	0.25	NA
Offsite	MW-115D	Overburden	600137.10	411517.23	4536.95	4538.80	1.85	100	120	6	121	NA	110	0.1	0.25	NA
Offsite	MW-115S	Overburden	600134.12	411522.93	4536.86	4538.70	1.84	80	90	6	92	Passive	91.8	0.1	0.25	NA
Offsite	MW-116D	Overburden	601405.50	410224.99	4535.66	4535.66	0.00	122	142	6	143	NA	132	0.1	0.25	NA
Offsite	MW-116S	Overburden	601412.65	410222.65	4535.81	4535.81	0.00	78	93	6	93	Portable Pump	86	0.1	0.25	0.9

Table 2-2
Well Construction Summary

Location						Construction					Sampling - General		Low-Flow Sampling Calculations			
Well Group	Well ID	Geologic Zone	Easting (x-coordinate)	Northing (y-coordinate)	Elevation (ft msl)	Casing Elevation (ft msl)	Stickup Height (ft)	Screen Start (ft bgs)	Screen End (ft bgs)	Well Diameter (inches)	Total Well Depth (ft bgs)	Sample Type	Target Sample Depth (ft btoc)	Allowable Drawdown (ft)	Sample Tubing Diameter (in)	Minimum Purge Volume (gal)
RSE	RW-10	Alluvium	602949.24	408472.87	4644.68	4647.22	2.54	50	85	6	85	Tap	NA	NA	NA	NA
RSE	RW-15	Both	602794.84	408374.90	4652.35	4654.64	2.29	45	105	6	105	Tap	NA	NA	NA	NA
RSE	RW-17	Both	602833.34	408326.09	4650.13	4652.03	1.90	43.5	103.5	6	104	Tap	NA	NA	NA	NA
RSE	RW-4	Shallow Starlight	602844.29	408470.28	4648.26	4647.49	-0.77	50	100	6	100	Tap	NA	NA	NA	NA
RSE	RW-5	Starlight	603000.32	408502.41	4643.70	4645.08	1.38	60	100	6	100	Tap	NA	NA	NA	NA
RSE	RW-9R	Overburden	602710.18	408301.04	4658.51	4660.70	2.19	51	76	6	76	Tap	NA	NA	NA	NA
System Effluent	INJ-1R	Alluvium	603070.28	408879.42	4628.91	4631.77	2.86	30 and 100	85 and 110	6	125	Tap	NA	NA	NA	NA

Notes

XY coordinates are in Idaho State Plane East.

Sample Types Dedicated and Portable Pump refer to low-flow bladder pumps.

Target Sample Depth is pump depth for dedicated or portable pump locations OR tether deployment depth for passive locations. For passive and portable pump sampling, the depth may vary with water level.

Acronyms and Abbreviations

bgs - below ground surface

btoc - below top of casing

ft - feet

gal - gallons

in - inches

msl - mean sea level

RSE - remediation system extraction

Table 2-3
Landfill Gas Well Water Levels

Well ID	Date	Time	Depth to Water (ft btoc)	Total Depth (ft btoc)	Water Column (feet)
O-10-10-100	10/10/23	12:30	27.98	28.64	0.66
O-10-20-100	10/10/23	11:30	26.55	27.04	0.49
O-10-20-200	10/10/23	--	--	--	--
O-10-30-100	10/10/23	11:15	70.37	71.23	0.86
O-10-30-200	10/10/23	11:35	80.45	80.95	0.5
O-10-40-100	10/10/23	11:40	61.09	61.6	0.51
O-10-40-200	10/10/23	12:05	42.19	42.9	0.71
O-10-40-40	10/10/23	11:11	45.21	45.89	0.68
O-10-40-50	10/10/23	11:10	39.8	40.4	0.6
O-10-50-200	10/10/23	12:10	36.95	37.81	0.86
O-10-60-200	10/10/23	11:45	30.45	30.71	0.26
O-10-60-300	10/10/23	12:15	39.25	40.05	0.8
O-10-60-400	10/10/23	12:25	31.33	31.75	0.42
O-10-70-300	10/10/23	11:50	27.3	27.73	0.43
O-10-70-400	10/10/23	12:20	36.46	37.05	0.59
O-10-80-100	10/10/23	11:00	41.62	42.43	0.81
O-10-80-200	10/10/23	11:05	42.18	48.25	6.07
O-10-80-300	10/10/23	11:07	47.39	55.51	8.12
O-10-80-400	10/10/23	11:55	68.35	75.55	7.2

Notes:

1. -- = well not measured.
2. Acronyms: ft btoc = feet below top of casing

Section 3 Tables Notes

Highlight indicates values greater than the MCL

Underline indicates values greater than IDGW Standard (or outside range for pH)

Bold indicates detected values

Italics indicates nondetected values

µg/L = micrograms per liter

µS/cm = microsiemens per centimeter

D = Dissolved

EPA = U.S. Environmental Protection Agency

ID GW = Idaho Groundwater Standards

J = Result is estimated

J- = Result is estimated biased low

J+ = Result is estimated biased high

MCL = maximum contaminant level

mg/L = milligrams per liter

NTU = Nephelometric Turbidity Unit

PCB = Polychlorinated Biphenyl

pg/L = picograms per liter

Q = qualifier

R = Result is Rejected

su = standard unit

SVOCs = semivolatile organic compounds

T = Total

U = Analyte was not detected at the associated value

UJ = The non-detection at the associated value is an estimate

VOCs = volatile organic compounds

Table 3-1
Monitoring Well Water Levels, Screened Intervals, and Vertical Gradients

Well ID	X Coordinate (Idaho State Plane East, feet)	Y Coordinate (Idaho State Plane East, feet)	Surface Elevation (ft amsl)	Screened Interval (ft bgs)	Remediation System On			Direction of Gradient ^A	Gradient ^A (ft/ft)
					Measurement Date and Time	Water Level Depth (ft btoc)	Water Level Elevation (ft amsl)		
MP-1	602761.69	408352.38	4654.5	60-100	10/9/23 9:16 AM	59.2	4597.4	NA	NA
MP-2	602701.14	408455.07	4653.6	50-90	10/9/23 8:56 AM	68.6	4586.6	NA	NA
MP-3	602977.01	408513.44	4643.7	60-100	10/9/23 1:08 PM	63.8	4579.5	NA	NA
MP-4	602866.15	408483.99	4646.1	60-100	10/9/23 1:13 PM	60.8	4584.9	NA	NA
MP-9	602681.26	408307.11	4660.0	120-125	10/9/23 9:32 AM	57.4	4605.6	NA	NA
MW-1	602884.14	408171.01	4662.0	77-97	10/9/23 11:47 AM	79.6	4585.3	NA	NA
MW-101S	602849.09	408144.91	4664.3	55-75	10/9/23 5:53 PM	58.2	4608.2	NA	NA
MW-102S	602985.40	409527.94	4592.0	125-145	10/9/23 11:05 AM	123.0	4471.2	NA	NA
MW-103D	603103.39	410107.66	4557.6	173.5-183.5	10/9/23 8:58 AM	85.8	4474.3	up	-0.04
MW-103S	603129.08	410112.39	4558.4	90-110	10/9/23 9:00 AM	88.6	4471.4		
MW-104D	602701.80	408302.41	4659.1	79-89	10/9/23 9:25 AM	57.4	4602.4	down	0.14
MW-104S	602701.58	408302.37	4659.4	47-67	10/9/23 9:20 AM	54.5	4605.8		
MW-105D	602648.19	408312.73	4661.9	72-82	10/9/23 11:16 AM	60.1	4602.5	down	0.21
MW-105S	602647.98	408312.75	4661.8	45-65	10/9/23 11:14 AM	56.6	4606.0		
MW-106D	600093.80	411850.82	4514.2	89-99	10/9/23 9:26 AM	47.1	4469.0	none	0.00
MW-106S	600104.55	411853.60	4514.2	55-75	10/9/23 9:02 AM	47.9	4469.0		
MW-109D	602755.03	407352.69	4718.0	75-95	10/9/23 12:08 PM	61.2	4658.4	down	0.40
MW-109S	602754.98	407352.97	4717.6	42-62	10/9/23 12:05 PM	49.4	4670.3		
MW-110D	602682.88	407809.65	4745.8	154-159	10/9/23 2:05 PM	125.4	4622.5	down	0.12
MW-110S	602679.68	407814.61	4745.5	107.5-127.5	10/9/23 1:55 PM	120.8	4626.4		
MW-111D	602441.43	408278.97	4697.6	104-124	10/9/23 1:39 PM	64.0	4635.1	down	0.15
MW-111S	602436.53	408279.31	4697.2	54-74	10/9/23 1:37 PM	56.9	4642.6		
MW-112D	603032.31	408428.91	4646.3	93-103	10/9/23 11:37 AM	66.1	4582.1	down	0.04
MW-112M	603032.11	408428.81	4646.7	66-76	10/9/23 11:35 AM	65.0	4583.2		
MW-112S	603028.35	408438.57	4645.9	41-61	10/9/23 11:32 AM	62.1	4585.5	NA	NA
MW-113D	602321.07	408447.20	4709.6	115-135	10/9/23 1:47 PM	25.5	4686.1	up	-0.02
MW-113S	602321.27	408446.94	4709.7	74-94	10/9/23 1:45 PM	26.7	4684.9		
MW-115D	600137.10	411517.23	4537.0	100-120	10/9/23 9:15 AM	69.6	4469.2	none	0.00
MW-115S	600134.12	411522.93	4536.9	80-90	10/9/23 6:36 PM	69.6	4469.2		
MW-117R	603245.33	409527.52	4580.5	113-123	10/9/23 11:13 AM	112.0	4471.2	NA	NA
MW-118D	602707.80	408888.74	4640.1	82-102	10/9/23 10:57 AM	85.5	4555.9	NA	NA
MW-119D	603024.86	408687.13	4639.9	90-100	10/9/23 12:51 PM	71.5	4570.0	down	0.14
MW-119S	603024.89	408687.06	4639.8	70-80	10/9/23 12:49 PM	68.1	4573.0		

Table 3-1
Monitoring Well Water Levels, Screened Intervals, and Vertical Gradients

Well ID	X Coordinate (Idaho State Plane East, feet)	Y Coordinate (Idaho State Plane East, feet)	Surface Elevation (ft amsl)	Screened Interval (ft bgs)	Remediation System On			Direction of Gradient ^A	Gradient ^A (ft/ft)
					Measurement Date and Time	Water Level Depth (ft btoc)	Water Level Elevation (ft amsl)		
MW-120D	602838.95	408697.20	4642.5	90-100	10/9/23 12:40 PM	77.3	4566.2	--	--
MW-120S	602838.70	408697.16	4642.4	70-80	10/9/23 12:35 PM	78.1	4565.4		
MW-121	602592.09	408533.57	4651.8	67-87	10/9/23 5:51 PM	60.5	4591.1	NA	NA
MW-122	602945.48	407993.05	4675.9	38-48	10/9/23 11:55 AM	51.2	4627.9	NA	NA
MW-123	603172.68	408470.89	4651.0	67.3-71.3	10/9/23 5:22 PM	39.0	4614.7	NA	NA
MW-124	602759.92	408518.61	4645.6	60-90	10/9/23 11:00 AM	64.1	4581.2	NA	NA
MW-125	602694.76	408523.14	4646.7	60-90	10/9/23 11:05 AM	69.7	4576.8	NA	NA
MW-12	598951.47	406337.29	5225.1	168.5-208.5	10/9/23 12:15 PM	161.6	5066.3	NA	NA
MW-13	600863.67	406542.90	5008.6	157-177	10/9/23 2:48 PM	75.9	4934.7	NA	NA
MW-3A	599802.12	404955.76	5265.2	379-399	10/9/23 2:31 PM	283.4	4984.5	NA	NA
MW-4	600977.01	405619.70	5074.2	141-181	10/9/23 12:05 PM	131.7	4944.3	NA	NA
MW-4A	597985.08	405227.62	5502.5	179-199	10/9/23 11:44 AM	142.8	5362.4	NA	NA
MW-5AR	599343.78	406055.29	5223.4	195-215	10/9/23 12:33 PM	153.7	5072.2	NA	NA
MW-6A	600252.50	405869.49	5084.6	145.4-165.4	10/9/23 1:00 PM	90.7	4997.3	NA	NA
MW-8	600494.07	407129.37	5121.2	189.5-229.5	10/9/23 12:49 PM	194.4	4928.6	NA	NA
MW-9	599877.48	407052.69	5191.5	229.5-269.5	10/9/23 12:44 PM	184.4	5009.1	NA	NA
RW-1	602744.15	408367.93	4654.3	60-100	10/9/23 9:11 AM	58.3	4597.2	NA	NA
RW-2	602676.91	408451.36	4653.8	70-90	10/9/23 9:04 AM	63.0	4592.2	NA	NA
RW-3	602585.05	408523.94	4653.2	50-90	10/9/23 5:32 PM	84.7	4567.9	NA	NA

Notes

ft btoc = feet below top of casing

ft amsl = feet above mean sea level

ft bgs = feet below ground surface

NA = not applicable

^ADirection and magnitude of gradient is calculated between shallow and deep paired wells

Table 3-2
Cell 1 Monitoring Wells Results

Analytes	FRACTION	EPA MCL	ID GW - PRIMARY	ID GW - SECONDARY	Sample Name	MP-1-20231011		MP-2-20231012		MP-3-20231011		MP-4-20231011		MW-101S-20231013	
						Well ID	MP-1	MP-2	MP-3	MP-4	MW-101S				
						Sample Date	2023-10-11	2023-10-12	2023-10-11	2023-10-11	2023-10-13				
Field and Redox Parameters															
Bromide	T	--	--	--	mg/L	--		0.8	--	--	--	--	--	--	
Chloride	T	--	--	250	mg/L	--		230	--	--	--	--	--	--	
Dissolved Oxygen	N	--	--	--	mg/L	8.1		0.48	3.09	2.15	5.34				
Ethane	T	--	--	--	µg/L	--		0.57	U	--	--	--	--	--	
Ferrous Iron	N	--	--	--	mg/L	--		1	--	--	--	--	--	--	
Manganese	T	--	--	0.05	mg/L	--		1.2	--	--	--	--	--	--	
Manganese	D	--	--	0.05	mg/L	--		1.4	--	--	--	--	--	--	
Methane	T	--	--	--	mg/L	--		0.054	--	--	--	--	--	--	
Nitrate	T	10	10	--	mg/L	--		0.15	J-	--	--	--	--	--	
Oxidation-Reduction Potential	N	--	--	--	mV	132.9		21.1	223.4	120.8	6.4				
pH	N	--	--	6.5 - 8.5	su	6.14		6.48	6.49	6.04	6.95				
Propane	T	--	--	--	µg/L	--		0.56	U	--	--	--	--	--	
Specific Conductance	N	--	--	--	µS/cm	1616		1952	1201	1528	850				
Sulfate	T	--	--	250	mg/L	--		82	--	--	--	--	--	--	
Temperature	N	--	--	--	Celsius	12.1		9.8	11.9	12.6	12.1				
Total Organic Carbon	T	--	--	--	mg/L	--		4.6	--	--	--	--	--	--	
Turbidity	N	--	--	--	ntu	2.57		2.23	20	8.71	1.76				
Inorganics															
Antimony	D	6	6	--	µg/L	--		0.4	U	--	--	--	--	--	
Antimony	T	6	6	--	µg/L	--		0.4	U	--	--	--	--	--	
Arsenic	D	10	50	--	µg/L	--		2.6	J	--	--	--	--	--	
Arsenic	T	10	50	--	µg/L	--		2.8	J	--	--	--	--	--	
Barium	D	2000	2000	--	µg/L	--		400	--	--	--	--	--	--	
Barium	T	2000	2000	--	µg/L	--		330	--	--	--	--	--	--	
Cadmium	D	5	5	--	µg/L	--		0.19	U	--	--	--	--	--	
Cadmium	T	5	5	--	µg/L	--		0.19	U	--	--	--	--	--	
Calcium	D	--	--	--	µg/L	--		200000	--	--	--	--	--	--	
Calcium	T	--	--	--	µg/L	--		170000	--	--	--	--	--	--	
Chromium	D	100	100	--	µg/L	--		0.5	U	--	--	--	--	--	
Chromium	T	100	100	--	µg/L	--		0.5	U	--	--	--	--	--	
Cobalt	D	--	--	--	µg/L	--		0.8	J	--	--	--	--	--	
Cobalt	T	--	--	--	µg/L	--		0.6	J	--	--	--	--	--	
Copper	D	1300	1300	--	µg/L	--		1.2	J	--	--	--	--	--	
Copper	T	1300	1300	--	µg/L	--		0.71	U	--	--	--	--	--	
Iron	D	--	--	300	µg/L	--		780	--	--	--	--	--	--	
Iron	T	--	--	300	µg/L	--		720	--	--	--	--	--	--	
Lead	D	15	15	--	µg/L	--		0.23	U	--	--	--	--	--	
Lead	T	15	15	--	µg/L	--		0.23	U	--	--	--	--	--	
Magnesium	D	--	--	--	µg/L	--		65000	--	--	--	--	--	--	
Magnesium	T	--	--	--	µg/L	--		57000	--	--	--	--	--	--	
Manganese	T	--	--	0.05	mg/L	--		1.2	--	--	--	--	--	--	
Manganese	D	--	--	0.05	mg/L	--		1.4	--	--	--	--	--	--	
Nickel	D	--	--	--	µg/L	--		8.3	--	--	--	--	--	--	
Nickel	T	--	--	--	µg/L	--		6.8	--	--	--	--	--	--	
Potassium	D	--	--	--	µg/L	--		4100	--	--	--	--	--	--	
Potassium	T	--	--	--	µg/L	--		3800	--	--	--	--	--	--	

Fall 2023 Semiannual Cell 1, 2, and 4 Groundwater Monitoring and

Remediation System Operation and Maintenance Report

Fort Hall Mine Landfill, Bannock County, Idaho

Table 3-2
Cell 1 Monitoring Wells Results

Analytes	FRACTION	EPA MCL	ID GW - PRIMARY	ID GW - SECONDARY	Sample Name	MP-1-20231011		MP-2-20231012		MP-3-20231011		MP-4-20231011		MW-101S-20231013	
						Well ID	MP-1		MP-2	MP-3		MP-4	MW-101S		
						Sample Date	2023-10-11		2023-10-12		2023-10-11		2023-10-11		2023-10-13
Result	Qualifie	Result	Qualifie	Result	Qualifie	Result	Qualifie	Result	Qualifie	Result	Qualifie	Result	Qualifie	Result	Qualifie
Selenium	D	50	50	--	µg/L	--		1	U	--		--		--	
Selenium	T	50	50	--	µg/L	--		1	U	--		--		--	
Silver	D	--	--	100	µg/L	--		1	U	--		--		--	
Silver	T	--	--	100	µg/L	--		0.045	U	--		--		--	
Sodium	D	--	--	--	µg/L	--		91000		--		--		--	
Sodium	T	--	--	--	µg/L	--		79000		--		--		--	
Vanadium	D	--	--	--	µg/L	--		2.7	J	--		--		--	
Vanadium	T	--	--	--	µg/L	--		2.4	J	--		--		--	
Zinc	D	--	--	5000	µg/L	--		3.7	J	--		--		--	
Zinc	T	--	--	5000	µg/L	--		10	U	--		--		--	
VOCs															
1,1-Dichloroethane	T	--	--	--	µg/L	0.8	J	1		0.22	U	0.22	U	0.22	UJ
1,1-Dichloroethene	T	7	7	--	µg/L	0.23	U	0.23	U	0.23	U	0.23	U	0.23	UJ
1,2-Dichlorobenzene	T	600	600	--	µg/L	1.4		0.51	J	0.37	U	0.37	U	0.37	UJ
1,2-Dichloroethane	T	5	5	--	µg/L	0.54	U	0.54	U	0.54	U	0.54	U	0.54	UJ
1,2-Dichloropropane	T	5	5	--	µg/L	0.52	U	0.52	U	0.52	U	0.52	U	0.52	UJ
1,3-Dichlorobenzene	T	--	600	--	µg/L	0.33	U	0.33	U	0.33	U	0.33	U	0.33	UJ
1,4-Dichlorobenzene	T	75	75	--	µg/L	0.39	U	0.39	U	0.39	U	0.39	U	0.39	UJ
2-Butanone (MEK)	T	--	--	--	µg/L	6	U	6	U	6	U	6	U	6	UJ
Benzene	T	5	5	--	µg/L	0.31	U	0.31	U	0.31	U	0.31	U	0.31	UJ
Chlorobenzene	T	100	100	--	µg/L	0.42	U	0.42	U	0.42	U	0.42	U	0.42	UJ
Chloroform	T	80	2	--	µg/L	0.73	J	0.61	J	0.7	J	0.7	J	0.36	UJ
cis-1,2-Dichloroethene	T	70	70	--	µg/L	14		42		0.71	J	4.7		0.42	J
Dichlorodifluoromethane	T	--	--	--	µg/L	0.96	U	0.96	U	0.96	U	0.96	U	0.96	UJ
Ethylbenzene	T	700	700	--	µg/L	0.3	U	0.3	U	0.3	U	0.3	U	0.3	UJ
m,p-Xylene	T	10000	--	--	µg/L	0.36	U	0.36	U	0.36	U	0.36	U	0.36	UJ
o-xylene	T	10000	--	--	µg/L	0.33	U	0.33	U	0.33	U	0.33	U	0.33	UJ
Tetrachloroethene	T	5	5	--	µg/L	8.8		2.4		10		12		11	J
trans-1,2-Dichloroethene	T	100	100	--	µg/L	0.37	U	0.37	U	0.37	U	0.37	U	0.37	UJ
Trichloroethene	T	5	5	--	µg/L	95		48		41		73		29	J
Trichlorofluoromethane	T	--	--	--	µg/L	0.57	U	0.57	U	0.57	U	0.57	U	0.57	UJ
Vinyl chloride	T	2	2	--	µg/L	3.1		1.8	J	0.51	U	0.51	U	0.51	UJ
Xylenes, total	T	10000	10000	--	µg/L	0.33	U	0.33	U	0.33	U	0.33	U	0.33	UJ

Table 3-2
Cell 1 Monitoring Wells Results

Analytes	FRACTION	EPA MCL	ID GW - PRIMARY	ID GW - SECONDARY	Sample Name	MW-102S-20231014	MW-105D-20231010	MW-105S-20231010	MW-109D-20231011	MW-109D-Q-20231011	
						Well ID	MW-102S	MW-105D	MW-109D	MW-109D	
						Sample Date	2023-10-14	2023-10-10	2023-10-10	2023-10-11	
Field and Redox Parameters											
Bromide	T	--	--	--	mg/L	--	--	--	--	--	--
Chloride	T	--	--	250	mg/L	--	--	--	--	--	--
Dissolved Oxygen	N	--	--	--	mg/L	5.52	0.55	1.34	6.73	--	--
Ethane	T	--	--	--	µg/L	--	--	--	--	--	--
Ferrous Iron	N	--	--	--	mg/L	--	--	--	--	--	--
Manganese	T	--	--	0.05	mg/L	--	--	--	--	--	--
Manganese	D	--	--	0.05	mg/L	--	--	--	--	--	--
Methane	T	--	--	--	mg/L	--	--	--	--	--	--
Nitrate	T	10	10	--	mg/L	--	--	--	--	--	--
Oxidation-Reduction Potential	N	--	--	--	mV	-0.7	39.9	91.9	214.7	--	--
pH	N	--	--	6.5 - 8.5	su	7.17	6.54	6.53	6.9	--	--
Propane	T	--	--	--	µg/L	--	--	--	--	--	--
Specific Conductance	N	--	--	--	µS/cm	666	1950	3503	1139	--	--
Sulfate	T	--	--	250	mg/L	--	--	--	--	--	--
Temperature	N	--	--	--	Celsius	12.9	13	13.6	11.2	--	--
Total Organic Carbon	T	--	--	--	mg/L	--	--	--	--	--	--
Turbidity	N	--	--	--	ntu	0.22	0.35	3.03	0.78	--	--
Inorganics											
Antimony	D	6	6	--	µg/L	--	--	--	--	--	--
Antimony	T	6	6	--	µg/L	--	--	--	--	--	--
Arsenic	D	10	50	--	µg/L	--	--	--	--	--	--
Arsenic	T	10	50	--	µg/L	--	--	--	--	--	--
Barium	D	2000	2000	--	µg/L	--	--	--	--	--	--
Barium	T	2000	2000	--	µg/L	--	--	--	--	--	--
Cadmium	D	5	5	--	µg/L	--	--	--	--	--	--
Cadmium	T	5	5	--	µg/L	--	--	--	--	--	--
Calcium	D	--	--	--	µg/L	--	--	--	--	--	--
Calcium	T	--	--	--	µg/L	--	--	--	--	--	--
Chromium	D	100	100	--	µg/L	--	--	--	--	--	--
Chromium	T	100	100	--	µg/L	--	--	--	--	--	--
Cobalt	D	--	--	--	µg/L	--	--	--	--	--	--
Cobalt	T	--	--	--	µg/L	--	--	--	--	--	--
Copper	D	1300	1300	--	µg/L	--	--	--	--	--	--
Copper	T	1300	1300	--	µg/L	--	--	--	--	--	--
Iron	D	--	--	300	µg/L	--	--	--	--	--	--
Iron	T	--	--	300	µg/L	--	--	--	--	--	--
Lead	D	15	15	--	µg/L	--	--	--	--	--	--
Lead	T	15	15	--	µg/L	--	--	--	--	--	--
Magnesium	D	--	--	--	µg/L	--	--	--	--	--	--
Magnesium	T	--	--	--	µg/L	--	--	--	--	--	--
Manganese	T	--	--	0.05	mg/L	--	--	--	--	--	--
Manganese	D	--	--	0.05	mg/L	--	--	--	--	--	--
Nickel	D	--	--	--	µg/L	--	--	--	--	--	--
Nickel	T	--	--	--	µg/L	--	--	--	--	--	--
Potassium	D	--	--	--	µg/L	--	--	--	--	--	--
Potassium	T	--	--	--	µg/L	--	--	--	--	--	--

Fall 2023 Semiannual Cell 1, 2, and 4 Groundwater Monitoring and

Remediation System Operation and Maintenance Report

Fort Hall Mine Landfill, Bannock County, Idaho

Table 3-2
Cell 1 Monitoring Wells Results

Analytes	FRACTION	EPA MCL	ID GW - PRIMARY	ID GW - SECONDARY	Sample Name	MW-102S-20231014		MW-105D-20231010		MW-105S-20231010		MW-109D-20231011		MW-109D-Q-20231011			
						Well ID	MW-102S		Well ID	MW-105D		Well ID	MW-105S		Well ID	MW-109D	
						Sample Date	2023-10-14		Sample Date	2023-10-10		Sample Date	2023-10-10		Sample Date	2023-10-11	
Result	Qualifie	Result	Qualifie	Result	Qualifie	Result	Qualifie	Result	Qualifie	Result	Qualifie	Result	Qualifie	Result	Qualifie	Result	Qualifie
Selenium	D	50	50	--	µg/L	--		--		--		--		--		--	
Selenium	T	50	50	--	µg/L	--		--		--		--		--		--	
Silver	D	--	--	100	µg/L	--		--		--		--		--		--	
Silver	T	--	--	100	µg/L	--		--		--		--		--		--	
Sodium	D	--	--	--	µg/L	--		--		--		--		--		--	
Sodium	T	--	--	--	µg/L	--		--		--		--		--		--	
Vanadium	D	--	--	--	µg/L	--		--		--		--		--		--	
Vanadium	T	--	--	--	µg/L	--		--		--		--		--		--	
Zinc	D	--	--	5000	µg/L	--		--		--		--		--		--	
Zinc	T	--	--	5000	µg/L	--		--		--		--		--		--	
VOCs																	
1,1-Dichloroethane	T	--	--	--	µg/L	0.22	UJ	13		0.74 J		0.22	U	0.22	U	0.22	U
1,1-Dichloroethene	T	7	7	--	µg/L	0.23	UJ	3.2 J		0.23	U	0.23	U	0.23	U	0.23	U
1,2-Dichlorobenzene	T	600	600	--	µg/L	0.37	UJ	1.7 J		0.9 J		0.37	U	0.37	U	0.37	U
1,2-Dichloroethane	T	5	5	--	µg/L	0.54	UJ	2.2	U	0.54	U	0.54	U	0.54	U	0.54	U
1,2-Dichloropropane	T	5	5	--	µg/L	0.52	UJ	2.1	U	0.52	U	0.52	U	0.52	U	0.52	U
1,3-Dichlorobenzene	T	--	600	--	µg/L	0.33	UJ	1.3	U	0.33	U	0.33	U	0.33	U	0.33	U
1,4-Dichlorobenzene	T	75	75	--	µg/L	0.39	UJ	1.6	U	0.39	U	0.39	U	0.39	U	0.39	U
2-Butanone (MEK)	T	--	--	--	µg/L	6	UJ	24	U	6	U	6	U	6	U	6	U
Benzene	T	5	5	--	µg/L	0.31	UJ	1.2	U	0.31	U	0.31	U	0.31	U	0.31	U
Chlorobenzene	T	100	100	--	µg/L	0.42	UJ	1.7	U	0.42	U	0.42	U	0.42	U	0.42	U
Chloroform	T	80	2	--	µg/L	0.36	UJ	7.5		1.8		1	U	0.54	J		
cis-1,2-Dichloroethene	T	70	70	--	µg/L	0.32	UJ	53		10		0.32	U	0.32	U	0.32	U
Dichlorodifluoromethane	T	--	--	--	µg/L	0.96	UJ	11 J		0.96	U	0.96	U	0.96	U	0.96	U
Ethylbenzene	T	700	700	--	µg/L	0.3	UJ	1.2	U	0.3	U	0.3	U	0.3	U	0.3	U
m,p-Xylene	T	10000	--	--	µg/L	0.36	UJ	1.4	U	0.36	U	0.36	U	0.36	U	0.36	U
o-xylene	T	10000	--	--	µg/L	0.33	UJ	1.3	U	0.33	U	0.33	U	0.33	U	0.33	U
Tetrachloroethene	T	5	5	--	µg/L	0.98 J		140		9.9		14		13			
trans-1,2-Dichloroethene	T	100	100	--	µg/L	0.37	UJ	1.5	U	0.37	U	0.37	U	0.37	U	0.37	U
Trichloroethene	T	5	5	--	µg/L	2.6 J		780		53		56		53			
Trichlorofluoromethane	T	--	--	--	µg/L	0.57	UJ	2.8 J		0.57	U	0.57	U	0.57	U	0.57	U
Vinyl chloride	T	2	2	--	µg/L	0.51	UJ	3.5 J		0.96 J		0.51	U	0.51	U	0.51	U
Xylenes, total	T	10000	10000	--	µg/L	0.33	UJ	1.3	U	0.33	U	0.33	U	0.33	U	0.33	U

Table 3-2
Cell 1 Monitoring Wells Results

Analytes	FRACTION	EPA MCL	ID GW - PRIMARY	ID GW - SECONDARY	Sample Name	MW-109S-20231012	MW-110D-20231014	MW-110S-20231014	MW-111D-20231013	MW-112D-20231010	
						Well ID	MW-109S	MW-110D	MW-111D	MW-112D	
						Sample Date	2023-10-12	2023-10-14	2023-10-14	2023-10-13	2023-10-10
Field and Redox Parameters											
Bromide	T	--	--	--	mg/L	--	--	--	--	--	0.46
Chloride	T	--	--	250	mg/L	--	--	--	--	--	--
Dissolved Oxygen	N	--	--	--	mg/L	1.12	1.46	2.06	0.64	5.43	
Ethane	T	--	--	--	µg/L	--	--	--	--	--	--
Ferrous Iron	N	--	--	--	mg/L	--	--	--	--	--	--
Manganese	T	--	--	0.05	mg/L	--	--	--	--	--	--
Manganese	D	--	--	0.05	mg/L	--	--	--	--	--	--
Methane	T	--	--	--	mg/L	--	--	--	--	--	--
Nitrate	T	10	10	--	mg/L	--	--	--	--	--	--
Oxidation-Reduction Potential	N	--	--	--	mV	25.4	5.9	34.9	-148.2	69.5	
pH	N	--	--	6.5 - 8.5	su	6.57	7.21	6.41	6.55	5.91	
Propane	T	--	--	--	µg/L	--	--	--	--	--	--
Specific Conductance	N	--	--	--	µS/cm	945	1005	1587	6576	855	
Sulfate	T	--	--	250	mg/L	--	--	--	--	--	--
Temperature	N	--	--	--	Celsius	10.9	14.1	12.8	12	12.2	
Total Organic Carbon	T	--	--	--	mg/L	--	--	--	--	--	
Turbidity	N	--	--	--	ntu	0.37	6.02	0.02	0.83	0.66	
Inorganics											
Antimony	D	6	6	--	µg/L	--	--	--	--	--	--
Antimony	T	6	6	--	µg/L	--	--	--	--	--	--
Arsenic	D	10	50	--	µg/L	--	--	--	--	--	--
Arsenic	T	10	50	--	µg/L	--	--	--	--	--	--
Barium	D	2000	2000	--	µg/L	--	--	--	--	--	--
Barium	T	2000	2000	--	µg/L	--	--	--	--	--	--
Cadmium	D	5	5	--	µg/L	--	--	--	--	--	--
Cadmium	T	5	5	--	µg/L	--	--	--	--	--	--
Calcium	D	--	--	--	µg/L	--	--	--	--	--	--
Calcium	T	--	--	--	µg/L	--	--	--	--	--	--
Chromium	D	100	100	--	µg/L	--	--	--	--	--	--
Chromium	T	100	100	--	µg/L	--	--	--	--	--	--
Cobalt	D	--	--	--	µg/L	--	--	--	--	--	--
Cobalt	T	--	--	--	µg/L	--	--	--	--	--	--
Copper	D	1300	1300	--	µg/L	--	--	--	--	--	--
Copper	T	1300	1300	--	µg/L	--	--	--	--	--	--
Iron	D	--	--	300	µg/L	--	--	--	--	--	--
Iron	T	--	--	300	µg/L	--	--	--	--	--	--
Lead	D	15	15	--	µg/L	--	--	--	--	--	--
Lead	T	15	15	--	µg/L	--	--	--	--	--	--
Magnesium	D	--	--	--	µg/L	--	--	--	--	--	--
Magnesium	T	--	--	--	µg/L	--	--	--	--	--	--
Manganese	T	--	--	0.05	mg/L	--	--	--	--	--	--
Manganese	D	--	--	0.05	mg/L	--	--	--	--	--	--
Nickel	D	--	--	--	µg/L	--	--	--	--	--	--
Nickel	T	--	--	--	µg/L	--	--	--	--	--	--
Potassium	D	--	--	--	µg/L	--	--	--	--	--	--
Potassium	T	--	--	--	µg/L	--	--	--	--	--	--

Table 3-2
Cell 1 Monitoring Wells Results

Analytes	FRACTION	EPA MCL	ID GW - PRIMARY	ID GW - SECONDARY	Sample Name	MW-109S-20231012	MW-110D-20231014	MW-110S-20231014	MW-111D-20231013	MW-112D-20231010	
						Well ID	MW-109S	MW-110D	MW-110S	MW-111D	MW-112D
						Sample Date	2023-10-12	2023-10-14	2023-10-14	2023-10-13	2023-10-10
Analytes	FRACTION	EPA MCL	ID GW - PRIMARY	ID GW - SECONDARY	Sample Name	Result	Qualifie	Result	Qualifie	Result	Qualifie
Selenium	D	50	50	--	µg/L	--		--		--	
Selenium	T	50	50	--	µg/L	--		--		--	
Silver	D	--	--	100	µg/L	--		--		--	
Silver	T	--	--	100	µg/L	--		--		--	
Sodium	D	--	--	--	µg/L	--		--		--	
Sodium	T	--	--	--	µg/L	--		--		--	
Vanadium	D	--	--	--	µg/L	--		--		--	
Vanadium	T	--	--	--	µg/L	--		--		--	
Zinc	D	--	--	5000	µg/L	--		--		--	
Zinc	T	--	--	5000	µg/L	--		--		--	
VOCs											
1,1-Dichloroethane	T	--	--	--	µg/L	0.22	UJ	0.3 J	0.64 J	13	
1,1-Dichloroethene	T	7	7	--	µg/L	0.23	UJ	0.23 UJ	0.23 UJ	0.23 U	0.88 J
1,2-Dichlorobenzene	T	600	600	--	µg/L	0.37 UJ	0.37 UJ	1.3 J		10	
1,2-Dichloroethane	T	5	5	--	µg/L	0.54 UJ	0.54 UJ	0.54 UJ		0.54 U	1.1 U
1,2-Dichloropropane	T	5	5	--	µg/L	0.52 UJ	0.52 UJ	0.52 UJ		1.5	
1,3-Dichlorobenzene	T	--	600	--	µg/L	0.33 UJ	0.33 UJ	0.33 UJ		0.33 J	0.67 U
1,4-Dichlorobenzene	T	75	75	--	µg/L	0.39 UJ	0.39 UJ	0.42 J		6.8	
2-Butanone (MEK)	T	--	--	--	µg/L	6 UJ		6 UJ		6 U	12 U
Benzene	T	5	5	--	µg/L	0.31 UJ	0.31 UJ	0.33 J		10	
Chlorobenzene	T	100	100	--	µg/L	0.42 UJ	0.42 UJ	0.42 UJ		32	
Chloroform	T	80	2	--	µg/L	0.73 J	0.36 UJ	0.36 UJ		0.36 U	0.72 U
cis-1,2-Dichloroethene	T	70	70	--	µg/L	0.32 UJ		2 J	10 J		0.64 U
Dichlorodifluoromethane	T	--	--	--	µg/L	0.96 UJ		1.9 J		4	
Ethylbenzene	T	700	700	--	µg/L	0.3 UJ		0.3 UJ		9.9	
m,p-Xylene	T	10000	--	--	µg/L	0.36 UJ		0.36 UJ		1.1 J	
o-xylene	T	10000	--	--	µg/L	0.33 UJ		0.33 UJ		1.6	
Tetrachloroethene	T	5	5	--	µg/L	28 J		4.5 J		12 J	
trans-1,2-Dichloroethene	T	100	100	--	µg/L	0.37 UJ		0.37 UJ		0.37 UJ	
Trichloroethene	T	5	5	--	µg/L	63 J		17 J		67 J	
Trichlorofluoromethane	T	--	--	--	µg/L	0.57 UJ		0.57 UJ		0.57 U	
Vinyl chloride	T	2	2	--	µg/L	0.51 UJ		0.51 UJ		2.6 J	
Xylenes, total	T	10000	10000	--	µg/L	0.33 UJ		0.33 UJ		2.7	

Table 3-2
Cell 1 Monitoring Wells Results

Analytes	FRACTION	EPA MCL	ID GW - PRIMARY	ID GW - SECONDARY	Sample Name	MW-112M-20231013	MW-113D-20231014	MW-113S-20231013	MW-117R-20231024	MW-118D-20231010
						Well ID	MW-112M	MW-113D	MW-117R	MW-118D
						Sample Date	2023-10-13	2023-10-14	2023-10-13	2023-10-10
Field and Redox Parameters										
Bromide	T	--	--	--	mg/L	0.69		--	--	1.5
Chloride	T	--	--	250	mg/L	--		--	--	680
Dissolved Oxygen	N	--	--	--	mg/L	6.1		7.16	1.37	7.61
Ethane	T	--	--	--	µg/L	--		--	--	0.57
Ferrous Iron	N	--	--	--	mg/L	--		--	0.15	--
Manganese	T	--	--	0.05	mg/L	--		--	--	--
Manganese	D	--	--	0.05	mg/L	--		--	--	1.4
Methane	T	--	--	--	mg/L	--		--	--	0.051
Nitrate	T	10	10	--	mg/L	--		--	--	1.8
Oxidation-Reduction Potential	N	--	--	--	mV	25.1		45	-72.5	53.9
pH	N	--	--	6.5 - 8.5	su	6.83		7.11	6.39	7.6
Propane	T	--	--	--	µg/L	--		--	--	0.56
Specific Conductance	N	--	--	--	µS/cm	966		656	3085	1075
Sulfate	T	--	--	250	mg/L	--		--	--	80
Temperature	N	--	--	--	Celsius	11.2		11.4	12.5	11.8
Total Organic Carbon	T	--	--	--	mg/L	--		--	--	14
Turbidity	N	--	--	--	ntu	22.63		18.2	0.6	14.59
Inorganics										
Antimony	D	6	6	--	µg/L	--		--	--	1.7
Antimony	T	6	6	--	µg/L	--		--	--	--
Arsenic	D	10	50	--	µg/L	--		--	--	1.1
Arsenic	T	10	50	--	µg/L	--		--	--	--
Barium	D	2000	2000	--	µg/L	--		--	--	520
Barium	T	2000	2000	--	µg/L	--		--	--	--
Cadmium	D	5	5	--	µg/L	--		--	--	0.23
Cadmium	T	5	5	--	µg/L	--		--	--	--
Calcium	D	--	--	--	µg/L	--		--	--	250000
Calcium	T	--	--	--	µg/L	--		--	--	--
Chromium	D	100	100	--	µg/L	--		--	--	0.59
Chromium	T	100	100	--	µg/L	--		--	--	--
Cobalt	D	--	--	--	µg/L	--		--	--	5.6
Cobalt	T	--	--	--	µg/L	--		--	--	--
Copper	D	1300	1300	--	µg/L	--		--	--	6
Copper	T	1300	1300	--	µg/L	--		--	--	--
Iron	D	--	--	300	µg/L	--		--	--	26
Iron	T	--	--	300	µg/L	--		--	--	--
Lead	D	15	15	--	µg/L	--		--	--	2.4
Lead	T	15	15	--	µg/L	--		--	--	--
Magnesium	D	--	--	--	µg/L	--		--	--	97000
Magnesium	T	--	--	--	µg/L	--		--	--	--
Manganese	T	--	--	0.05	mg/L	--		--	--	--
Manganese	D	--	--	0.05	mg/L	--		--	--	1.4
Nickel	D	--	--	--	µg/L	--		--	--	76
Nickel	T	--	--	--	µg/L	--		--	--	--
Potassium	D	--	--	--	µg/L	--		--	--	5700
Potassium	T	--	--	--	µg/L	--		--	--	--

Table 3-2
Cell 1 Monitoring Wells Results

Analytes	FRACTION	EPA MCL	ID GW - PRIMARY	ID GW - SECONDARY	Sample Name	MW-112M-20231013	MW-113D-20231014	MW-113S-20231013	MW-117R-20231024	MW-118D-20231010
						Well ID	MW-112M	MW-113D	MW-117R	MW-118D
						Sample Date	2023-10-13	2023-10-14	2023-10-13	2023-10-10
Analytes	FRACTION	EPA MCL	ID GW - PRIMARY	ID GW - SECONDARY	Sample Name	Unit	Result	Qualifie	Result	Qualifie
Selenium	D	50	50	--	µg/L	--	--	--	--	1.2 J
Selenium	T	50	50	--	µg/L	--	--	--	--	--
Silver	D	--	--	100	µg/L	--	--	--	--	1 U
Silver	T	--	--	100	µg/L	--	--	--	--	--
Sodium	D	--	--	--	µg/L	--	--	--	--	190000
Sodium	T	--	--	--	µg/L	--	--	--	--	--
Vanadium	D	--	--	--	µg/L	--	--	--	--	2.8 J
Vanadium	T	--	--	--	µg/L	--	--	--	--	--
Zinc	D	--	--	5000	µg/L	--	--	--	--	3.8 J
Zinc	T	--	--	5000	µg/L	--	--	--	--	--
VOCs										
1,1-Dichloroethane	T	--	--	--	µg/L	0.44	UJ	0.23	J	23 J
1,1-Dichloroethene	T	7	7	--	µg/L	0.46	UJ	0.23	UJ	0.58 J
1,2-Dichlorobenzene	T	600	600	--	µg/L	0.74	UJ	0.37	UJ	11 J
1,2-Dichloroethane	T	5	5	--	µg/L	1.1	UJ	0.54	UJ	3.9 J
1,2-Dichloropropane	T	5	5	--	µg/L	1	UJ	0.52	UJ	4.9 J
1,3-Dichlorobenzene	T	--	600	--	µg/L	0.67	UJ	0.33	UJ	0.33 U
1,4-Dichlorobenzene	T	75	75	--	µg/L	0.78	UJ	0.39	UJ	5.7 J
2-Butanone (MEK)	T	--	--	--	µg/L	12	UJ	6	UJ	6 U
Benzene	T	5	5	--	µg/L	0.62	UJ	0.31	UJ	6.7 J
Chlorobenzene	T	100	100	--	µg/L	0.84	UJ	0.42	UJ	0.46 J
Chloroform	T	80	2	--	µg/L	0.72	UJ	0.36	UJ	1.2 J
cis-1,2-Dichloroethene	T	70	70	--	µg/L	0.64	UJ	0.32	UJ	24 J
Dichlorodifluoromethane	T	--	--	--	µg/L	1.9	UJ	1.3	J	17 J
Ethylbenzene	T	700	700	--	µg/L	0.61	UJ	0.3	UJ	0.96 U
m,p-Xylene	T	10000	--	--	µg/L	0.71	UJ	0.36	UJ	0.36 U
o-xylene	T	10000	--	--	µg/L	0.66	UJ	0.33	UJ	0.92 J
Tetrachloroethene	T	5	5	--	µg/L	7.8	J	0.4	UJ	16 J
trans-1,2-Dichloroethene	T	100	100	--	µg/L	0.74	UJ	0.37	UJ	4.3
Trichloroethene	T	5	5	--	µg/L	110	J	0.3	UJ	17
Trichlorofluoromethane	T	--	--	--	µg/L	1.1	UJ	0.57	UJ	1.8 J
Vinyl chloride	T	2	2	--	µg/L	1	UJ	0.51	UJ	66 J
Xylenes, total	T	10000	10000	--	µg/L	0.66	UJ	0.33	UJ	0.51 U
										0.33 U

Table 3-2
Cell 1 Monitoring Wells Results

Analytes	FRACTION	EPA MCL	ID GW - PRIMARY	ID GW - SECONDARY	Sample Name	MW-119D-20231010	MW-119S-20231010	MW-120D-20231010	MW-120S-20231010	MW-121-20231013
						Well ID	MW-119D	MW-119S	MW-120D	MW-121
						Sample Date	2023-10-10	2023-10-10	2023-10-10	2023-10-13
Field and Redox Parameters										
Bromide	T	--	--	--	mg/L	1.2		0.63		0.83
Chloride	T	--	--	250	mg/L	150		150		200
Dissolved Oxygen	N	--	--	--	mg/L	2.66		2.42		0.33
Ethane	T	--	--	--	µg/L	0.57	U	0.57	U	--
Ferrous Iron	N	--	--	--	mg/L	--		--		--
Manganese	T	--	--	0.05	mg/L	--		--		6.5
Manganese	D	--	--	0.05	mg/L	0.0023	J	0.00051	J	0.23
Methane	T	--	--	--	mg/L	--		--		0.00064
Nitrate	T	10	10	--	mg/L	1.7	J-	2	J-	0.11
Oxidation-Reduction Potential	N	--	--	--	mV	66		83.1		94.7
pH	N	--	--	6.5 - 8.5	su	5.22		5.11		6.81
Propane	T	--	--	--	µg/L	0.56	U	0.56	U	0.56
Specific Conductance	N	--	--	--	µS/cm	1151		1161		1224
Sulfate	T	--	--	250	mg/L	110		110		88
Temperature	N	--	--	--	Celsius	15.2		11.9		15.1
Total Organic Carbon	T	--	--	--	mg/L	1.5		1.8		2.3
Turbidity	N	--	--	--	ntu	--		--		14.1
Inorganics										
Antimony	D	6	6	--	µg/L	3.2		0.4	U	0.4
Antimony	T	6	6	--	µg/L	--		--		0.4
Arsenic	D	10	50	--	µg/L	0.72	J	0.83	J	1.7
Arsenic	T	10	50	--	µg/L	--		--		3.3
Barium	D	2000	2000	--	µg/L	200		180		290
Barium	T	2000	2000	--	µg/L	--		--		300
Cadmium	D	5	5	--	µg/L	0.19	U	0.19	U	0.19
Cadmium	T	5	5	--	µg/L	--		--		0.19
Calcium	D	--	--	--	µg/L	110000		110000		140000
Calcium	T	--	--	--	µg/L	--		--		170000
Chromium	D	100	100	--	µg/L	0.5	U	0.5	U	0.5
Chromium	T	100	100	--	µg/L	--		--		1.2
Cobalt	D	--	--	--	µg/L	0.33	U	0.33	U	1.6
Cobalt	T	--	--	--	µg/L	--		--		1.2
Copper	D	1300	1300	--	µg/L	0.79	J	1.1	J	1.2
Copper	T	1300	1300	--	µg/L	--		--		0.71
Iron	D	--	--	300	µg/L	8.7	U	18	J	18
Iron	T	--	--	300	µg/L	--		--		5300
Lead	D	15	15	--	µg/L	0.23	U	0.23	U	0.23
Lead	T	15	15	--	µg/L	--		--		0.77
Magnesium	D	--	--	--	µg/L	48000		47000		46000
Magnesium	T	--	--	--	µg/L	--		--		62000
Manganese	T	--	--	0.05	mg/L	--		--		0.93
Manganese	D	--	--	0.05	mg/L	0.0023	J	0.00051	J	0.23
Nickel	D	--	--	--	µg/L	0.83	U	0.83	U	4.2
Nickel	T	--	--	--	µg/L	--		--		10
Potassium	D	--	--	--	µg/L	3400		3700		4800
Potassium	T	--	--	--	µg/L	--		--		5600
						--		--		4900

Table 3-2
Cell 1 Monitoring Wells Results

Analytes	FRACTION	EPA MCL	ID GW - PRIMARY	ID GW - SECONDARY	Sample Name	MW-119D-20231010		MW-119S-20231010		MW-120D-20231010		MW-120S-20231010		MW-121-20231013		
						Well ID	MW-119D		MW-119S		Well ID	MW-120D		MW-120S		Well ID
						2023-10-10	2023-10-10		2023-10-10		2023-10-10	2023-10-10		2023-10-10		2023-10-13
Selenium	D	50	50	--	µg/L	1	U	--	1	U	--	1	U	--	--	
Selenium	T	50	50	--	µg/L	--		--	--		--	--		1	U	
Silver	D	--	--	100	µg/L	1	U	--	1	U	--	1	U	--	--	
Silver	T	--	--	100	µg/L	--		--	--		--	--		0.045	U	
Sodium	D	--	--	--	µg/L	69000		72000		53000		90000		--		
Sodium	T	--	--	--	µg/L	--		--		--		--		150000		
Vanadium	D	--	--	--	µg/L	1.5	J	1.6	J	2	J	2.2	J	--		
Vanadium	T	--	--	--	µg/L	--		--		--		--		2	J	
Zinc	D	--	--	5000	µg/L	2	U	4.5	J	27		2	U	--		
Zinc	T	--	--	5000	µg/L	--		--		--		--		10	U	
VOCs																
1,1-Dichloroethane	T	--	--	--	µg/L	0.22	U	0.22	U	1.2		0.82	J	0.47	J	
1,1-Dichloroethene	T	7	7	--	µg/L	0.23	U	0.23	U	1.3		0.23	U	0.23	UJ	
1,2-Dichlorobenzene	T	600	600	--	µg/L	0.37	U	0.37	U	0.37	U	1.7		0.71	J	
1,2-Dichloroethane	T	5	5	--	µg/L	0.54	U	0.54	U	0.54	U	0.54	U	0.54	UJ	
1,2-Dichloropropane	T	5	5	--	µg/L	0.52	U	0.52	U	0.52	U	0.52	U	0.52	UJ	
1,3-Dichlorobenzene	T	--	600	--	µg/L	0.33	U	0.33	U	0.33	U	0.33	U	0.33	UJ	
1,4-Dichlorobenzene	T	75	75	--	µg/L	0.39	U	0.39	U	0.39	U	0.39	U	0.45	J	
2-Butanone (MEK)	T	--	--	--	µg/L	6	U	6	U	6	U	6	U	6	UJ	
Benzene	T	5	5	--	µg/L	0.31	U	0.31	U	0.31	U	0.31	U	0.44	J	
Chlorobenzene	T	100	100	--	µg/L	0.42	U	0.42	U	0.42	U	0.42	U	2.1	J	
Chloroform	T	80	2	--	µg/L	0.71	J	0.73	J	0.36	U	0.42	J	0.36	UJ	
cis-1,2-Dichloroethene	T	70	70	--	µg/L	1.8		1.8		11		32		0.43	J	
Dichlorodifluoromethane	T	--	--	--	µg/L	0.96	U	0.96	U	2.9	J	0.96	U	0.96	UJ	
Ethylbenzene	T	700	700	--	µg/L	0.3	U	0.3	U	0.3	U	0.3	U	0.3	UJ	
m,p-Xylene	T	10000	--	--	µg/L	0.36	U	0.36	U	0.36	U	0.36	U	0.36	UJ	
o-xylene	T	10000	--	--	µg/L	0.33	U	0.33	U	0.33	U	0.33	U	0.33	UJ	
Tetrachloroethene	T	5	5	--	µg/L	13		16		8.1		7.6		2.2	J	
trans-1,2-Dichloroethene	T	100	100	--	µg/L	0.37	U	0.37	U	0.37	U	0.37	U	0.37	UJ	
Trichloroethene	T	5	5	--	µg/L	67		57		140		70		3.4	J	
Trichlorofluoromethane	T	--	--	--	µg/L	0.57	U	0.57	U	0.74	J	0.57	U	0.57	UJ	
Vinyl chloride	T	2	2	--	µg/L	0.51	U	0.51	U	1.6	J	1.7	J	0.51	UJ	
Xylenes, total	T	10000	10000	--	µg/L	0.33	U	0.33	U	0.33	U	0.33	U	0.33	UJ	

Table 3-2
Cell 1 Monitoring Wells Results

Analytes	FRACTION	EPA MCL	ID GW - PRIMARY	ID GW - SECONDARY	Sample Name	MW-123-20231014	MW-124-20231012	MW-124-Q-20231012	MW-125-20231012	RW-1-20231013	
						Well ID	MW-123	MW-124	MW-124	MW-125	RW-1
						Sample Date	2023-10-14	2023-10-12	2023-10-12	2023-10-12	2023-10-13
Field and Redox Parameters											
Bromide	T	--	--	--	mg/L	--		5 J-	--	--	--
Chloride	T	--	--	250	mg/L	--		290 J-	300 J-	460 J-	--
Dissolved Oxygen	N	--	--	--	mg/L	4.47		1.05	--	6.15	0.22
Ethane	T	--	--	--	µg/L	--		0.73 J	0.57 U	1.5 J	--
Ferrous Iron	N	--	--	--	mg/L	--		1.5	--	0.1	--
Manganese	T	--	--	0.05	mg/L	--		4.3	5.8	1.1	--
Manganese	D	--	--	0.05	mg/L	--		5.5	4.7	1.1	--
Methane	T	--	--	--	mg/L	--		0.0088	0.012	0.018	--
Nitrate	T	10	10	--	mg/L	--		--	0.17 J-	4.7 J-	--
Oxidation-Reduction Potential	N	--	--	--	mV	192.4		-47.8	--	139	83.4
pH	N	--	--	6.5 - 8.5	su	7.05		6.42	--	6.98	6.26
Propane	T	--	--	--	µg/L	--		0.56 U	1.9 J	1.5 J	--
Specific Conductance	N	--	--	--	µS/cm	1008		1768	--	1880	1783
Sulfate	T	--	--	250	mg/L	--		81	81	67	--
Temperature	N	--	--	--	Celsius	12.4		13.4	--	13	13.1
Total Organic Carbon	T	--	--	--	mg/L	--		4.9	5	4.7	4.3
Turbidity	N	--	--	--	ntu	48.76		6.31	--	39.8	3.41
Inorganics											
Antimony	D	6	6	--	µg/L	--		0.54 J	0.4 U	0.4 U	--
Antimony	T	6	6	--	µg/L	--		0.4 U	0.51 J	0.4 U	--
Arsenic	D	10	50	--	µg/L	--		3.3 J	3.3 J	2.4 J	--
Arsenic	T	10	50	--	µg/L	--		3.2 J	4.7 J	8.7	--
Barium	D	2000	2000	--	µg/L	--		430	390	420	--
Barium	T	2000	2000	--	µg/L	--		360	450	480	--
Cadmium	D	5	5	--	µg/L	--		0.19 U	0.19 U	0.19 U	--
Cadmium	T	5	5	--	µg/L	--		0.19 U	0.2 J	0.19 U	--
Calcium	D	--	--	--	µg/L	--		200000	180000	250000	--
Calcium	T	--	--	--	µg/L	--		160000	190000	250000	--
Chromium	D	100	100	--	µg/L	--		0.5 U	0.5 U	0.5 U	--
Chromium	T	100	100	--	µg/L	--		0.5 U	0.59 J	78	--
Cobalt	D	--	--	--	µg/L	--		3.8	3.6	0.75 J	--
Cobalt	T	--	--	--	µg/L	--		3.2 J	4.6 J	1.3	--
Copper	D	1300	1300	--	µg/L	--		0.71 U	0.71 U	2 U	--
Copper	T	1300	1300	--	µg/L	--		0.71 U	0.84 J	5.5	--
Iron	D	--	--	300	µg/L	--		1200	1100	200 U	--
Iron	T	--	--	300	µg/L	--		1400 J	2100 J	4500	--
Lead	D	15	15	--	µg/L	--		0.23 UJ	0.23 UJ	0.23 UJ	--
Lead	T	15	15	--	µg/L	--		0.23 U	1 UJ	1.3	--
Magnesium	D	--	--	--	µg/L	--		69000	63000	79000	--
Magnesium	T	--	--	--	µg/L	--		57000	69000	81000	--
Manganese	T	--	--	0.05	mg/L	--		4.3	5.8	1.1	--
Manganese	D	--	--	0.05	mg/L	--		5.5	4.7	1.1	--
Nickel	D	--	--	--	µg/L	--		24	23	7.6	--
Nickel	T	--	--	--	µg/L	--		17 J	28 J	13	--
Potassium	D	--	--	--	µg/L	--		4000	4000	4900	--
Potassium	T	--	--	--	µg/L	--		3500	4200	4700 J	--

Fall 2023 Semiannual Cell 1, 2, and 4 Groundwater Monitoring and

Remediation System Operation and Maintenance Report

Fort Hall Mine Landfill, Bannock County, Idaho

Table 3-2
Cell 1 Monitoring Wells Results

Analytes	FRACTION	EPA MCL	ID GW - PRIMARY	ID GW - SECONDARY	Sample Name	MW-123-20231014		MW-124-20231012		MW-124-Q-20231012		MW-125-20231012		RW-1-20231013			
						Well ID		MW-123		MW-124		MW-124		MW-125		RW-1	
						Sample Date	Result	Qualifie	Result	Qualifie	Result	Qualifie	Result	Qualifie	Result	Qualifie	
Selenium	D	50	50	--	µg/L	--			1	U	1	U	1	U	--		
Selenium	T	50	50	--	µg/L	--			1	U	1	U	1	U	--		
Silver	D	--	--	100	µg/L	--			1	U	0.045	U	0.045	U	--		
Silver	T	--	--	100	µg/L	--			0.045	U	1	U	0.045	U	--		
Sodium	D	--	--	--	µg/L	--			92000		88000		100000		--		
Sodium	T	--	--	--	µg/L	--			79000		96000		110000		--		
Vanadium	D	--	--	--	µg/L	--			1.4	J	1.1	U	3	J	--		
Vanadium	T	--	--	--	µg/L	--			1.1	U	1.9	J	8.6		--		
Zinc	D	--	--	5000	µg/L	--			2.9	J	10	U	10	U	--		
Zinc	T	--	--	5000	µg/L	--			10	U	3.4	J	6.5	J	--		
VOCs																	
1,1-Dichloroethane	T	--	--	--	µg/L	0.22	UJ		1.4		1.3		0.78	J	1.1	J	
1,1-Dichloroethene	T	7	7	--	µg/L	0.23	UJ		0.39	J	0.37	J	0.23	U	0.25	J	
1,2-Dichlorobenzene	T	600	600	--	µg/L	0.37	UJ		2		2.1		0.57	J	2.2	J	
1,2-Dichloroethane	T	5	5	--	µg/L	0.54	UJ		0.54	U	0.54	U	0.54	U	0.54	UJ	
1,2-Dichloropropane	T	5	5	--	µg/L	0.52	UJ		0.67	J	0.63	J	0.52	U	0.63	J	
1,3-Dichlorobenzene	T	--	600	--	µg/L	0.33	UJ		0.33	U	0.33	U	0.33	U	0.33	UJ	
1,4-Dichlorobenzene	T	75	75	--	µg/L	0.39	UJ		0.56	J	0.58	J	0.39	U	0.65	J	
2-Butanone (MEK)	T	--	--	--	µg/L	6	UJ		6	U	6	U	6	U	6	UJ	
Benzene	T	5	5	--	µg/L	0.31	UJ		0.33	J	0.31	J	0.31	U	0.38	J	
Chlorobenzene	T	100	100	--	µg/L	0.42	UJ		0.42	U	0.42	U	0.42	U	0.42	UJ	
Chloroform	T	80	2	--	µg/L	0.36	UJ		0.37	J	0.36	UJ	0.54	J	0.7	J	
cis-1,2-Dichloroethene	T	70	70	--	µg/L	0.32	UJ		56		56		31		19	J	
Dichlorodifluoromethane	T	--	--	--	µg/L	0.96	UJ		0.96	U	0.96	U	0.96	U	0.96	UJ	
Ethylbenzene	T	700	700	--	µg/L	0.3	UJ		0.3	U	0.3	U	0.3	U	0.3	UJ	
m,p-Xylene	T	10000	--	--	µg/L	0.36	UJ		0.36	U	0.36	U	0.36	U	0.36	UJ	
o-Xylene	T	10000	--	--	µg/L	0.33	UJ		0.33	U	0.33	U	0.33	U	0.33	UJ	
Tetrachloroethene	T	5	5	--	µg/L	6.2	J		4.4		4.4		5		9.7	J	
trans-1,2-Dichloroethene	T	100	100	--	µg/L	0.37	UJ		0.37	U	0.37	U	0.37	U	0.37	UJ	
Trichloroethene	T	5	5	--	µg/L	63	J		48		51		32		110	J	
Trichlorofluoromethane	T	--	--	--	µg/L	0.57	UJ		0.57	U	0.57	U	0.57	U	0.57	UJ	
Vinyl chloride	T	2	2	--	µg/L	0.51	UJ		6.6		6.8		1.5	J	5.6	J	
Xylenes, total	T	10000	10000	--	µg/L	0.33	UJ		0.33	U	0.33	U	0.33	U	0.33	UJ	

Table 3-2
Cell 1 Monitoring Wells Results

Analytes	FRACTION	EPA MCL	ID GW - PRIMARY	ID GW - SECONDARY	Sample Name	RW-2-20231012		RW-2-20231014		RW-3-20231014		RW-16-20231012	
						Well ID	RW-2	Well ID	RW-2	Well ID	RW-3	Well ID	RW-16
						Sample Date	2023-10-12	Unit	Result	Qualifie	Result	Qualifie	Result
Field and Redox Parameters													
Bromide	T	--	--	--	mg/L	--		1.2		--		--	
Chloride	T	--	--	250	mg/L	--		250		--		--	
Dissolved Oxygen	N	--	--	--	mg/L	0.26		1.05		1.61		0.25	
Ethane	T	--	--	--	µg/L	0.57	U	--		--		--	
Ferrous Iron	N	--	--	--	mg/L	--		--		--		--	
Manganese	T	--	--	0.05	mg/L	4.2		--		--		--	
Manganese	D	--	--	0.05	mg/L	4.8		--		--		--	
Methane	T	--	--	--	mg/L	0.8		--		--		--	
Nitrate	T	10	10	--	mg/L	--		--		--		--	
Oxidation-Reduction Potential	N	--	--	--	mV	-146.7		-143.3		104.4		148.9	
pH	N	--	--	6.5 - 8.5	su	6.43		6.27		6.65		6.39	
Propane	T	--	--	--	µg/L	2	J	--		--		--	
Specific Conductance	N	--	--	--	µS/cm	1789		1971		2351		1306	
Sulfate	T	--	--	250	mg/L	--		64		--		--	
Temperature	N	--	--	--	Celsius	12.8		13.3		12.3		11.5	
Total Organic Carbon	T	--	--	--	mg/L	9.7		--		--		--	
Turbidity	N	--	--	--	ntu	0.98		0.71		3.01		0.13	
Inorganics													
Antimony	D	6	6	--	µg/L	0.4	U	--		--		--	
Antimony	T	6	6	--	µg/L	1.3	J	--		--		--	
Arsenic	D	10	50	--	µg/L	4	J	--		--		--	
Arsenic	T	10	50	--	µg/L	2.5	J	--		--		--	
Barium	D	2000	2000	--	µg/L	420		--		--		--	
Barium	T	2000	2000	--	µg/L	410		--		--		--	
Cadmium	D	5	5	--	µg/L	0.19	U	--		--		--	
Cadmium	T	5	5	--	µg/L	0.19	U	--		--		--	
Calcium	D	--	--	--	µg/L	200000		--		--		--	
Calcium	T	--	--	--	µg/L	180000		--		--		--	
Chromium	D	100	100	--	µg/L	0.5	U	--		--		--	
Chromium	T	100	100	--	µg/L	0.5	U	--		--		--	
Cobalt	D	--	--	--	µg/L	3.3		--		--		--	
Cobalt	T	--	--	--	µg/L	3.3		--		--		--	
Copper	D	1300	1300	--	µg/L	0.71	U	--		--		--	
Copper	T	1300	1300	--	µg/L	0.71	U	--		--		--	
Iron	D	--	--	300	µg/L	2100		--		--		--	
Iron	T	--	--	300	µg/L	1700		--		--		--	
Lead	D	15	15	--	µg/L	0.23	U	--		--		--	
Lead	T	15	15	--	µg/L	0.23	U	--		--		--	
Magnesium	D	--	--	--	µg/L	66000		--		--		--	
Magnesium	T	--	--	--	µg/L	65000		--		--		--	
Manganese	T	--	--	0.05	mg/L	4.2		--		--		--	
Manganese	D	--	--	0.05	mg/L	4.8		--		--		--	
Nickel	D	--	--	--	µg/L	22		--		--		--	
Nickel	T	--	--	--	µg/L	22		--		--		--	
Potassium	D	--	--	--	µg/L	4200		--		--		--	
Potassium	T	--	--	--	µg/L	4400		--		--		--	

Fall 2023 Semiannual Cell 1, 2, and 4 Groundwater Monitoring and

Remediation System Operation and Maintenance Report

Fort Hall Mine Landfill, Bannock County, Idaho

Table 3-2
Cell 1 Monitoring Wells Results

Analytes	FRACTION	EPA MCL	ID GW - PRIMARY	ID GW - SECONDARY	Sample Name	RW-2-20231012		RW-2-20231014		RW-3-20231014		RW-16-20231012		
						Well ID	RW-2	Well ID	RW-2	Sample Date	2023-10-12	Well ID	RW-16	
						Unit	Result	Qualifie	Result	Qualifie	Result	Qualifie	Result	Qualifie
Selenium	D	50	50	--	µg/L	1	U	--	--	--	--	--	--	--
Selenium	T	50	50	--	µg/L	1	U	--	--	--	--	--	--	--
Silver	D	--	--	100	µg/L	0.06	J	--	--	--	--	--	--	--
Silver	T	--	--	100	µg/L	0.045	U	--	--	--	--	--	--	--
Sodium	D	--	--	--	µg/L	100000		--	--	--	--	--	--	--
Sodium	T	--	--	--	µg/L	100000		--	--	--	--	--	--	--
Vanadium	D	--	--	--	µg/L	1.9	J	--	--	--	--	--	--	--
Vanadium	T	--	--	--	µg/L	1.2	J	--	--	--	--	--	--	--
Zinc	D	--	--	5000	µg/L	2	U	--	--	--	--	--	--	--
Zinc	T	--	--	5000	µg/L	2.8	J	--	--	--	--	--	--	--
VOCs														
1,1-Dichloroethane	T	--	--	--	µg/L	1.2		--		0.28	J	0.39	J	
1,1-Dichloroethene	T	7	7	--	µg/L	0.23	U	--		0.23	UJ	0.23	UJ	
1,2-Dichlorobenzene	T	600	600	--	µg/L	2		--		0.37	UJ	0.58	J	
1,2-Dichloroethane	T	5	5	--	µg/L	0.54	U	--		0.54	UJ	0.54	UJ	
1,2-Dichloropropane	T	5	5	--	µg/L	0.63	J	--		0.52	UJ	0.52	UJ	
1,3-Dichlorobenzene	T	--	600	--	µg/L	0.33	U	--		0.33	UJ	0.33	UJ	
1,4-Dichlorobenzene	T	75	75	--	µg/L	0.58	J	--		0.39	UJ	0.39	UJ	
2-Butanone (MEK)	T	--	--	--	µg/L	20		--		6	UJ	6	UJ	
Benzene	T	5	5	--	µg/L	0.36	J	--		0.31	UJ	0.31	UJ	
Chlorobenzene	T	100	100	--	µg/L	0.42	U	--		0.95	J	0.42	UJ	
Chloroform	T	80	2	--	µg/L	0.36	J	--		0.36	UJ	0.75	J	
cis-1,2-Dichloroethene	T	70	70	--	µg/L	67		--		0.32	UJ	6.3	J	
Dichlorodifluoromethane	T	--	--	--	µg/L	0.96	U	--		0.96	UJ	0.96	UJ	
Ethylbenzene	T	700	700	--	µg/L	0.3	U	--		0.3	UJ	0.3	UJ	
m,p-Xylene	T	10000	--	--	µg/L	0.36	U	--		0.36	UJ	0.36	UJ	
o-Xylene	T	10000	--	--	µg/L	0.33	U	--		0.33	UJ	0.33	UJ	
Tetrachloroethene	T	5	5	--	µg/L	3.1		--		1.6	J	12	J	
trans-1,2-Dichloroethene	T	100	100	--	µg/L	0.37	U	--		0.37	UJ	0.37	UJ	
Trichloroethene	T	5	5	--	µg/L	29		--		2.5	J	73	J	
Trichlorofluoromethane	T	--	--	--	µg/L	0.57	U	--		0.57	UJ	0.57	UJ	
Vinyl chloride	T	2	2	--	µg/L	9.9		--		0.51	UJ	1.3	J	
Xylenes, total	T	10000	10000	--	µg/L	0.33	U	--		0.33	UJ	0.33	UJ	

Table 3-3
Offsite Monitoring Wells Results

Analyte	EPA MCL	ID GW - PRIMARY	ID GW - SECONDARY	Sample Name	MW-103D-20231024		MW-103S-20231014		MW-115S-20231013		MW-116S-20231014	
				Well ID	MW-103D		MW-103S		MW-115S		MW-116S	
				Sample Date	2023-10-24		2023-10-14		2023-10-13		2023-10-14	
				Unit	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
Field and Redox Parameters												
Dissolved Oxygen	--	--	--	mg/L	5.43		8.61		10.91		11.92	
Oxidation-Reduction Potential	--	--	--	mV	-3.1		126.7		177.7		238.7	
pH	--	--	6.5 - 8.5	su	8.19		6.92		7.07		7.01	
Specific Conductance	--	--	--	µS/cm	945		840		995		819	
Temperature	--	--	--	Celsius	11.5		11.3		11.4		11.1	
Turbidity	--	--	--	ntu	14.2		0.72		0.86		0.48	
VOCs												
cis-1,2-Dichloroethene	70	70	--	µg/L	--		0.32	UJ	0.32	UJ	0.51	J
Tetrachloroethene	5	5	--	µg/L	--		0.77	J	0.4	UJ	1.3	J
Trichloroethene	5	5	--	µg/L	--		3	J	4.4	J	6.5	J

Table 3-4
Remediation Wells Results

Analytes	EPA MCL	ID GW - PRIMARY	ID GW - SECONDARY	Sample Name	RW-4-20231012		RW-5-20231012		RW-9R-20231012		RW-10-20231012		RW-15-20231012		RW-17-20231012	
				Well ID	RW-4		RW-5		RW-9R		RW-10		RW-15		RW-17	
				Sample Date	2023-10-12		2023-10-12		2023-10-12		2023-10-12		2023-10-12		2023-10-12	
Field and Redox Parameters																
Dissolved Oxygen	--	--	--	mg/L	6.79		4.94		2.8		3.91		2.7		3.55	
Oxidation-Reduction Potential	--	--	--	mV	38.4		39.4		26.1		19.8		26.9		29.7	
pH	--	--	6.5 - 8.5	su	6.85		6.76		6.55		6.73		6.52		6.57	
Specific Conductance	--	--	--	µS/cm	1437		1100		1662		1115		1210		1111	
Temperature	--	--	--	Celsius	13.6		12.3		13.4		12.1		12.5		12.1	
Turbidity	--	--	--	ntu	0.61		0.71		57.2		0.38		1.04		1.78	
VOCs																
1,1-Dichloroethane	--	--	--	µg/L	0.65	J	0.22	UJ	1.1	J	0.22	UJ	0.57	J	0.22	UJ
1,1-Dichloroethene	7	7	--	µg/L	0.23	UJ	0.23	UJ	0.3	J	0.23	UJ	0.23	UJ	0.23	UJ
1,2-Dichlorobenzene	600	600	--	µg/L	0.37	UJ	0.37	UJ	3.5	J	0.37	UJ	1.6	J	0.37	UJ
1,2-Dichloropropane	5	5	--	µg/L	0.52	UJ	0.52	UJ	0.64	J	0.52	UJ	0.52	UJ	0.52	UJ
1,4-Dichlorobenzene	75	75	--	µg/L	0.39	UJ	0.39	UJ	1.1	J	0.39	UJ	0.44	J	0.39	UJ
Benzene	5	5	--	µg/L	0.31	UJ	0.31	UJ	0.45	J	0.31	UJ	0.31	UJ	0.31	UJ
Chlorobenzene	100	100	--	µg/L	0.42	UJ	0.42	UJ	0.45	J	0.42	UJ	0.42	UJ	0.42	UJ
Chloroform	80	2	--	µg/L	0.66	J	0.72	J	0.38	J	0.83	J	0.7	J	0.81	J
cis-1,2-Dichloroethene	70	70	--	µg/L	9.4	J	0.74	J	21	J	1.2	J	10	J	3.3	J
Tetrachloroethene	5	5	--	µg/L	18	J	13	J	9.5	J	16	J	18	J	20	J
Trichloroethene	5	5	--	µg/L	110	J	45	J	91	J	56	J	94	J	76	J
Vinyl chloride	2	2	--	µg/L	0.71	J	0.51	UJ	5.7	J	0.51	UJ	2.7	J	0.51	UJ

Table 3-5
Remediation Well Status and Groundwater Production Summary

Well ID	Total Depth	Screened Interval	Status (as of 12/07/23)	Cumulative Groundwater Removed (gal)	Average Flow Rate (gpm)
	(ft bgs)	(ft bgs)		08/04/23 - 12/07/23	08/04/23 - 12/07/23
RW-4	100'	50' to 100'	Operating	71,123	0.4
RW-5	100'	60' to 100'	Operating	803,886	5.0
RW-9R	78'	51' to 76'	Operating	250,844	1.6
RW-10	85'	50' to 85'	Operating	1,334,459	8.3
RW-15	105'	42' to 105'	Operating	1,912,672	11.8
RW-17	103.5'	43.5' to 103.5'	Operating	908,641	5.0
Air Stripper Influent		Operating		5,561,028	34.4

Notes:

ft bgs = feet below ground surface

gal = gallons

gpm = gallons per minute

1. The flowmeter for RW-17 stopped recording flow on 10/13/2023. The flowmeter was replaced on 11/16/2023.
2. The remediation system was shut down from 10/30/23 until 11/15/23 for blower maintenance and remediation system O&M.

Table 3-6
Injection Well Analytical Results

Analyte	EPA MCL	ID GW - PRIMARY	ID GW - SECONDARY	Area	Remediation System			
				Well ID	INJ-1R		INJ-1R	
				Sample Name	INJ-1R-20230822		INJ-1R-20231013	
				Sample Date	8/22/2023		10/13/2023	
				Unit	Result	Q	Result	Q
Volatile Organic Compounds (VOCs)								
1,1,1,2-Tetrachloroethane	--	--	--	µg/L	0.58	U	0.58	U
1,1,1-Trichloroethane	200	200	--	µg/L	0.39	U	0.39	U
1,1,2,2-Tetrachloroethane	--	--	--	µg/L	0.21	U	0.21	U
1,1,2-Trichloroethane	5	5	--	µg/L	0.27	U	0.27	U
1,1-Dichloroethane	--	--	--	µg/L	0.22	U	0.22	U
1,1-Dichloroethene	7	7	--	µg/L	0.23	U	0.23	U
1,1-Dichloropropene	--	--	--	µg/L	0.42	U	0.42	U
1,2,3-Trichloropropane	--	--	--	µg/L	0.86	U	0.005	U
1,2,4-Trichlorobenzene	70	70	--	µg/L	0.58	U	0.58	U
1,2-Dibromo-3-Chloropropane	0.2	0.2	--	µg/L	1.8	U	0.0068	U
1,2-Dibromoethane	0.05	0.05	--	µg/L	0.4	U	0.0037	U
1,2-Dichlorobenzene	600	600	--	µg/L	0.37	U	0.37	U
1,2-Dichloroethane	5	5	--	µg/L	0.54	U	0.54	U
1,2-Dichloropropane	5	5	--	µg/L	0.52	U	0.52	U
1,3-Dichlorobenzene	--	600	--	µg/L	0.33	U	0.33	U
1,3-Dichloropropane	--	--	--	µg/L	0.38	U	0.38	U
1,4-Dichlorobenzene	75	75	--	µg/L	0.39	U	0.39	U
2,2-Dichloropropane	--	--	--	µg/L	0.38	U	0.38	U
2-Butanone (MEK)	--	--	--	µg/L	6	U	6	U
2-Hexanone	--	--	--	µg/L	1.7	U	1.7	U
4-Methyl-2-pentanone (MIBK)	--	--	--	µg/L	0.98	U	0.98	U
Acetone	--	--	--	µg/L	6.6	U	6.6	U
Acetonitrile; methyl cyanide	--	--	--	µg/L	9.6	U	9.6	U
Acrolein	--	--	--	µg/L	4.9	U	4.9	U
Acrylonitrile	--	--	--	µg/L	4.5	U	4.5	U
Allyl chloride	--	--	--	µg/L	0.17	U	0.17	U
Benzene	5	5	--	µg/L	0.31	U	0.31	U
Bromochloromethane	--	--	--	µg/L	0.4	U	0.4	U
Bromodichloromethane	80	100	--	µg/L	0.39	U	0.39	U
Bromoform	80	100	--	µg/L	1.2	U	1.2	U
Bromomethane	--	--	--	µg/L	2.4	U	2.4	U
Carbon disulfide	--	--	--	µg/L	0.63	U	0.63	U
Carbon tetrachloride	5	5	--	µg/L	0.57	U	0.57	U
Chlorobenzene	100	100	--	µg/L	0.42	U	0.42	U
Chlorodibromomethane	80	100	--	µg/L	0.62	U	0.62	U
Chloroethane	--	--	--	µg/L	1.4	U	1.4	U
Chloroform	80	2	--	µg/L	0.36	U	0.36	U
Chloromethane	--	--	--	µg/L	0.75	U	0.75	U
Chloroprene	--	--	--	µg/L	1.2	U	1.2	U
cis-1,2-Dichloroethene	70	70	--	µg/L	0.32	U	0.32	U
cis-1,3-Dichloropropene	--	--	--	µg/L	0.63	U	0.63	U
Dibromomethane	--	--	--	µg/L	0.34	U	0.34	U
Dichlorodifluoromethane	--	--	--	µg/L	0.96	U	0.96	U
Ethyl methacrylate	--	--	--	µg/L	0.86	U	0.86	U
Ethylbenzene	700	700	--	µg/L	0.3	U	0.3	U
Iodomethane	--	--	--	µg/L	2.6	U	2.6	U
Isobutanol; Isobutyl alcohol	--	--	--	µg/L	37	U	37	U
m,p-Xylene	10000	--	--	µg/L	0.36	U	0.36	U
Methacrylonitrile	--	--	--	µg/L	5.3	U	5.3	U
Methyl methacrylate	--	--	--	µg/L	1.1	U	1.1	U
Methylene Chloride	5	5	--	µg/L	0.94	U	0.94	U
o-xylene	10000	--	--	µg/L	0.33	U	0.33	U
Propionitrile; ethyl cyanide	--	--	--	µg/L	3.7	U	3.7	U
Styrene	100	100	--	µg/L	0.36	U	0.36	U
Tetrachloroethene	5	5	--	µg/L	0.4	U	0.4	U
Toluene	1000	1000	--	µg/L	0.32	U	0.32	U
trans-1,2-Dichloroethene	100	100	--	µg/L	0.37	U	0.37	U

Table 3-6
Injection Well Analytical Results

Analyte	EPA MCL	ID GW - PRIMARY	ID GW - SECONDARY	Area	Remediation System			
					Well ID	INJ-1R		INJ-1R
				Sample Name	INJ-1R-20230822		INJ-1R-20231013	
				Sample Date	8/22/2023		10/13/2023	
				Unit	Result	Q	Result	Q
trans-1,3-Dichloropropene	--	--	--	µg/L	0.65	U	0.65	U
trans-1,4-Dichloro-2-butene	--	--	--	µg/L	1.4	U	1.4	U
Trichloroethene	5	5	--	µg/L	0.32	J	0.3	U
Trichlorofluoromethane	--	--	--	µg/L	0.57	U	0.57	U
Vinyl acetate	--	--	--	µg/L	0.94	U	0.94	U
Vinyl chloride	2	2	--	µg/L	0.51	U	0.51	U
Xylenes, total	10000	10000	--	µg/L	0.33	U	0.33	U
Inorganics								
Antimony	6	6	--	µg/L	--		0.4	U
Arsenic	10	50	--	µg/L	--		0.57	J
Barium	2000	2000	--	µg/L	--		190	
Beryllium	4	4	--	µg/L	--		0.3	U
Cadmium	5	5	--	µg/L	--		0.19	U
Calcium	--	--	--	µg/L	--		120000	
Chromium	100	100	--	µg/L	--		0.5	U
Cobalt	--	--	--	µg/L	--		0.33	U
Copper	1300	1300	--	µg/L	--		1.7	J
Cyanide	0.2	0.2	--	mg/L	--		0.005	U
Iron	--	--	300	µg/L	--		8.7	U
Lead	15	15	--	µg/L	--		0.23	U
Magnesium	--	--	--	µg/L	--		48000	
Manganese	--	--	0.05	mg/L	--		0.21	
Mercury	2	2	--	µg/L	--		0.061	U
Nickel	--	--	--	µg/L	--		3.6	
Potassium	--	--	--	µg/L	--		5200	
Selenium	50	50	--	µg/L	--		1	U
Silver	--	--	100	µg/L	--		0.045	U
Sodium	--	--	--	µg/L	--		74000	
Sulfide	--	--	--	mg/L	--		0.022	R
Thallium	2	2	--	µg/L	--		0.21	U
Tin	--	--	--	µg/L	--		0.58	U
Vanadium	--	--	--	µg/L	--		1.1	U
Zinc	--	--	5000	µg/L	--		10	U
Semivolatile Organic Compounds (SVOCs)								
1,2,4,5-Tetrachlorobenzene	--	--	--	µg/L	--		1.8	R
1,3,5-Trinitrobenzene	--	--	--	µg/L	--		5.1	R
1,3-Dinitrobenzene	--	--	--	µg/L	--		5.1	R
1,4-Naphthoquinone	--	--	--	µg/L	--		5.4	R
1-Naphthylamine	--	--	--	µg/L	--		3.6	R
2,3,4,6-Tetrachlorophenol	--	--	--	µg/L	--		7	R
2,4,5-Trichlorophenol	--	--	--	µg/L	--		0.89	R
2,4,6-Trichlorophenol	--	--	--	µg/L	--		0.7	R
2,4-Dichlorophenol	--	--	--	µg/L	--		0.63	R
2,4-Dimethylphenol; m-Xylenol	--	--	--	µg/L	--		1.3	R
2,4-Dinitrophenol	--	--	--	µg/L	--		13	R
2,4-Dinitrotoluene	--	--	--	µg/L	--		1.4	R
2,6-Dichlorophenol	--	--	--	µg/L	--		0.73	R
2,6-Dinitrotoluene	--	--	--	µg/L	--		1.4	R
2-Acetylaminofluorene	--	--	--	µg/L	--		8	R
2-Chloronaphthalene	--	--	--	µg/L	--		1.3	R
2-Chlorophenol	--	--	--	µg/L	--		0.67	R
2-Methylnaphthalene	--	--	--	µg/L	--		1.2	R
2-Methylphenol; o-Cresol	--	--	--	µg/L	--		0.76	R
2-Naphthylamine	--	--	--	µg/L	--		1.4	R
2-Nitroaniline; o-Nitroaniline	--	--	--	µg/L	--		2.6	R

Table 3-6
Injection Well Analytical Results

Analyte	EPA MCL	ID GW - PRIMARY	ID GW - SECONDARY	Area	Remediation System			
					Well ID	INJ-1R		INJ-1R
				Sample Name	INJ-1R-20230822		INJ-1R-20231013	
				Sample Date	8/22/2023		10/13/2023	
				Unit	Result	Q	Result	Q
2-Nitrophenol; o-Nitrophenol	--	--	--	µg/L	--		3.4	R
3&4-Methylphenol	--	--	--	µg/L	--		0.79	R
3,3'-Dichlorobenzidine	--	--	--	µg/L	--		3.3	R
3,3'-Dimethylbenzidine	--	--	--	µg/L	--		14	R
3-Methylcholanthrene	--	--	--	µg/L	--		3.8	R
3-Nitroaniline; m-Nitroaniline	--	--	--	µg/L	--		3.3	R
4,6-Dinitro-2-methylphenol	--	--	--	µg/L	--		4	R
4-Aminobiphenyl	--	--	--	µg/L	--		7.7	R
4-Bromophenyl phenyl ether	--	--	--	µg/L	--		1	R
4-Chloro-3-methylphenol	--	--	--	µg/L	--		0.68	R
4-Chloroaniline; p-Chloroaniline	--	--	--	µg/L	--		6.2	R
4-Chlorophenyl phenyl ether	--	--	--	µg/L	--		1.2	R
4-Nitroaniline; p-Nitroaniline	--	--	--	µg/L	--		2.6	R
4-Nitrophenol; p-Nitrophenol	--	--	--	µg/L	--		8.9	R
5-Nitro-o-toluidine	--	--	--	µg/L	--		4.2	R
7,12-Dimethylbenz[a]anthracene	--	--	--	µg/L	--		7.5	R
Acenaphthene	--	--	--	µg/L	--		0.95	R
Acenaphthylene	--	--	--	µg/L	--		0.74	R
Acetophenone	--	--	--	µg/L	--		0.67	R
Anthracene	--	--	--	µg/L	--		0.57	R
Benzo[a]anthracene	--	--	--	µg/L	--		0.39	R
Benzo[a]pyrene	0.2	0.2	--	µg/L	--		0.025	R
Benzo[b]fluoranthene	--	--	--	µg/L	--		1.2	R
Benzo[ghi]perylene	--	--	--	µg/L	--		0.5	R
Benzo[k]fluoranthene	--	--	--	µg/L	--		0.4	R
Benzyl alcohol	--	--	--	µg/L	--		2.5	R
Bis(2-chloroethoxy)methane	--	--	--	µg/L	--		0.8	R
Bis(2-chloroethyl)ether	--	--	--	µg/L	--		2	R
Bis(2-chloroisopropyl)ether	--	--	--	µg/L	--		1.3	R
Bis(2-ethylhexyl) phthalate	6	6	--	µg/L	--		3.3	R
Butyl benzyl phthalate	--	--	--	µg/L	--		1.5	R
Chlorobenzilate	--	--	--	µg/L	--		1.8	R
Chrysene	--	--	--	µg/L	--		2	R
Diallate	--	--	--	µg/L	--		3.9	R
Dibenz[a,h]anthracene	--	--	--	µg/L	--		0.57	R
Dibenzofuran	--	--	--	µg/L	--		0.94	R
Diethyl phthalate	--	--	--	µg/L	--		0.58	R
Dimethyl phthalate	--	--	--	µg/L	--		0.74	R
Di-n-butyl phthalate	--	--	--	µg/L	--		0.45	R
Di-n-octyl phthalate	--	--	--	µg/L	--		3.6	R
Diphenylamine	--	--	--	µg/L	--		0.68	R
Ethyl methanesulfonate	--	--	--	µg/L	--		0.54	R
Famphur	--	--	--	µg/L	--		0.16	R
Fluoranthene	--	--	--	µg/L	--		0.49	R
Fluorene	--	--	--	µg/L	--		0.78	R
Hexachloro-1,3-butadiene	--	--	--	µg/L	--		2.8	R
Hexachlorobenzene	1	1	--	µg/L	--		0.85	R
Hexachlorocyclopentadiene	50	50	--	µg/L	--		16	R
Hexachloroethane	--	--	--	µg/L	--		4.4	R
Hexachloropropene	--	--	--	µg/L	--		1.6	R
Indeno(1,2,3-cd)pyrene	--	--	--	µg/L	--		1.3	R
Isodrin	--	--	--	µg/L	--		0.012	R
Isophorone	--	--	--	µg/L	--		2	R
Isosafrole	--	--	--	µg/L	--		3.4	R
Kepone	--	--	--	µg/L	--		0.89	R
Methapyrilene	--	--	--	µg/L	--		9.4	R
Methyl methanesulfonate	--	--	--	µg/L	--		0.43	R
Naphthalene	--	--	--	µg/L	--		1.5	R
Nitrobenzene	--	--	--	µg/L	--		1.2	R
N-Nitrosodiethylamine	--	--	--	µg/L	--		0.34	R
N-Nitrosodimethylamine	--	--	--	µg/L	--		0.56	R
N-Nitrosodi-n-butylamine	--	--	--	µg/L	--		1.2	R
N-Nitrosodi-n-propylamine	--	--	--	µg/L	--		1.9	R
N-Nitrosodiphenylamine	--	--	--	µg/L	--		0.76	R
N-Nitrosomethylalkylamine	--	--	--	µg/L	--		1.8	R

Table 3-6
Injection Well Analytical Results

Analyte	EPA MCL	ID GW - PRIMARY	ID GW - SECONDARY	Area	Remediation System		
				Well ID	INJ-1R		INJ-1R
				Sample Name	INJ-1R-20230822	INJ-1R-20231013	
				Sample Date	8/22/2023	10/13/2023	
				Unit	Result	Q	Result
							Q
N-Nitrosopiperidine	--	--	--	µg/L	--		5.2 R
N-Nitrosopyrrolidine	--	--	--	µg/L	--		4.8 R
O,O,O-Triethyl phosphorothioate	--	--	--	µg/L	--		4.8 R
o-Toluidine	--	--	--	µg/L	--		2 R
p-(Dimethylamino)azobenzene	--	--	--	µg/L	--		0.87 R
Pentachlorobenzene	--	--	--	µg/L	--		1.1 R
Pentachloronitrobenzene	--	--	--	µg/L	--		8.2 R
Pentachlorophenol	1	1	--	µg/L	--		0.075 U
Phenacetin	--	--	--	µg/L	--		4.5 R
Phenanthrene	--	--	--	µg/L	--		1.6 R
Phenol	--	--	--	µg/L	--		0.91 R
Phorate	--	--	--	µg/L	--		0.14 R
Pronamide	--	--	--	µg/L	--		1.2 R
Pyrene	--	--	--	µg/L	--		0.52 R
Safrole, Total	--	--	--	µg/L	--		4 R
Thionazin	--	--	--	µg/L	--		4.1 R
Organochlorine Pesticides							
4,4'-DDD	--	--	--	µg/L	--		0.0042 R
4,4'-DDE	--	--	--	µg/L	--		0.0042 R
4,4'-DDT	--	--	--	µg/L	--		0.024 R
Aldrin	--	--	--	µg/L	--		0.0062 R
alpha-BHC	--	--	--	µg/L	--		0.0097 R
beta-BHC	--	--	--	µg/L	--		0.0091 R
Chlordane - constituents	2	2	--	µg/L	--		0.12 R
delta-BHC	--	--	--	µg/L	--		0.0078 R
Dieldrin	--	--	--	µg/L	--		0.0046 R
Endosulfan I	--	--	--	µg/L	--		0.0059 R
Endosulfan II	--	--	--	µg/L	--		0.0066 R
Endosulfan sulfate	--	--	--	µg/L	--		0.0049 R
Endrin	2	2	--	µg/L	--		0.0086 R
Endrin aldehyde	--	--	--	µg/L	--		0.0087 R
gamma-BHC (lindane)	0.2	0.2	--	µg/L	--		0.01 R
Heptachlor	0.4	0.4	--	µg/L	--		0.01 R
Heptachlor epoxide	0.2	0.2	--	µg/L	--		0.0032 R
Methoxychlor	40	40	--	µg/L	--		0.014 R
Toxaphene	3	3	--	µg/L	--		1.5 R
Organophosphorous Pesticides							
Dimethoate	--	--	--	µg/L	--		0.4 R
Disulfoton	--	--	--	µg/L	--		0.28 R
Methyl parathion	--	--	--	µg/L	--		0.12 R
Parathion	--	--	--	µg/L	--		0.13 R
Polychlorinated Biphenyls (PCBs)							
PCB 1016	0.5	--	--	µg/L	--		0.17 U
PCB 1221	0.5	--	--	µg/L	--		0.18 U
PCB 1232	0.5	--	--	µg/L	--		0.13 U
PCB 1242	0.5	--	--	µg/L	--		0.1 U
PCB 1248	0.5	--	--	µg/L	--		0.17 U
PCB 1254	0.5	--	--	µg/L	--		0.14 U
PCB 1260	0.5	--	--	µg/L	--		0.089 U
Polychlorinated Biphenyl (PCBs)	0.5	0.5	--	µg/L	--		0.073 U
Chlorinated Herbicides							
2,4,5-TP (Silvex)	50	50	--	µg/L	--		0.33 U
2,4,5-Trichlorophenoxyacetic acid	--	--	--	µg/L	--		0.33 U
2,4-Dichlorophenoxyacetic acid	70	70	--	µg/L	--		0.21 U
Dinoseb; 2-sec-Butyl-4,6-dinitrophenol	7	7	--	µg/L	--		0.23 U
Dioxins/Furans							
2,3,7,8-TCDD	30	30	--	pg/L	--		0.37 U
Field and Redox Parameters							
Manganese	--	--	0.05	mg/L	--		0.21
Sulfide	--	--	--	mg/L	--		0.022 R

Table 3-7
Cell 2 Monitoring Wells Results

Analyte	EPA MCL	ID GW - PRIMARY	ID GW - SECONDARY	Sample Name	MW-8-20231013	MW-9-20231013	MW-12-20231012	MW-13-20231011	MW-13-Q-20231011
				Well ID	MW-8	MW-9	MW-12	MW-13	MW-13
				Sample Date	2023-10-13	2023-10-13	2023-10-12	2023-10-11	2023-10-11
Field and Redox Parameters				Unit	Result	Qualifier	Result	Qualifier	Result
				mg/L	8.5		8.84		7.76
				mg/L	0.00051	U	2.4		0.0041
				mV	9.7		-167.8		95.4
				su	7.3		6.62		7.38
				µS/cm	680		5208		696
				Celsius	13.3		12.3		12.9
				ntu	2.03		0.4		1.72
							2.67		--
Inorganics				µg/L	3 J	1 J	0.5 U	3.8 J	3.8 J
				µg/L	31	31	51	110	110
				µg/L	54000	290000	59000	39000	42000
				µg/L	0.5 U	0.5 U	0.5 U	0.78 J	1 J
				µg/L	0.33 U	0.71 J	2.7	0.48 J	0.36 J
				µg/L	0.71 U	3.9	0.71 U	2 U	2 U
				µg/L	8.7 J	1700	8.7 U	200 U	200 U
				µg/L	19000	240000	16000	36000	38000
				mg/L	0.00051	U	2.4	0.0041	0.0027 J+
				µg/L	0.83 U	2.3 J	0.83 U	0.83 U	0.83 U
				µg/L	360 J	4200	830 J	2400	2600
				µg/L	42000	470000	31000	33000	35000
				µg/L	2 U	26	10 U	10 U	10 U
Organochlorine Pesticides				µg/L	0.0041 R	0.0042 R	0.0042 U	0.016 J	0.0041 UJ
				µg/L	0.0041 R	0.0042 R	0.014 J	0.017 J	0.11 J
				µg/L	0.024 R	0.024 R	0.024 U	0.022 UJ	0.12 J
				µg/L	0.0061 R	0.0062 R	0.0062 U	0.011 J	0.006 UJ
				µg/L	0.0095 R	0.0097 R	0.0097 UJ	0.01 J	0.0094 UJ
				µg/L	0.0089 R	0.0091 R	0.0091 UJ	0.01 J	0.0089 UJ
				µg/L	0.0077 R	0.0078 R	0.0078 U	0.012 J	0.0076 UJ
				µg/L	0.0045 R	0.0046 R	0.0046 U	0.012 J	0.0045 UJ
				µg/L	0.0057 R	0.0059 R	0.0059 U	0.011 J	0.0057 UJ
				µg/L	0.0065 R	0.0066 R	0.0066 U	0.015 J	0.0064 UJ
				µg/L	0.0048 R	0.0049 R	0.0049 U	0.0049 J	0.0048 UJ
				µg/L	0.0084 R	0.0086 R	0.0086 U	0.013 J	0.0084 UJ
				µg/L	0.0098 R	0.01 R	0.01 U	0.011 J	0.0097 UJ
				µg/L	0.0031 R	0.0032 R	0.0032 UJ	0.014 J	0.0031 UJ
				µg/L	0.014 R	0.014 R	0.014 U	0.014 J	0.014 UJ
SVOCs				µg/L	0.024 R	0.026 J-	0.024 U	0.024 U	0.025 U
				µg/L	0.42 R	0.43 R	0.43 U	19 J+	0.44 UJ
				µg/L	0.012 R	0.012 R	0.031 J	0.012 U	0.012 U
VOCs				µg/L	0.32 UJ	0.32 UJ	0.32 UJ	1.2	1.1
				µg/L	0.96 UJ	0.96 UJ	0.96 U	0.96 U	1 J
				µg/L	0.3 UJ	0.3 UJ	0.3 U	0.3 UJ	0.31 J

Table 3-8
Cell 4 Monitoring Wells Results

Analyte	EPA MCL	ID GW - PRIMARY	ID GW - SECONDAR Y	Sample Name	MW-3A-20231010	MW-4-20231012	MW-4A-20231010	MW-5AR-20231010	MW-6A-20231011
				Well ID	MW-3A	MW-4	MW-4A	MW-5AR	MW-6A
				Sample Date	2023-10-10	2023-10-12	2023-10-10	2023-10-10	2023-10-11
				Unit	Result	Qualifier	Result	Qualifier	Result
Field and Redox Parameters									
Dissolved Oxygen	--	--	--	mg/L	6.16		1.37		8.61
Manganese	--	--	0.05	mg/L	0.003	U	0.11		0.0042
Oxidation-Reduction Potential	--	--	--	mV	23.8		-43.7		90.3
pH	--	--	6.5 - 8.5	su	7.39		6.59		7.2
Specific Conductance	--	--	--	µS/cm	782		1321		2085
Temperature	--	--	--	Celsius	14.2		11.8		10.9
Turbidity	--	--	--	ntu	18.1		16.58		0.02
Inorganics									
Antimony	6	6	--	µg/L	0.4	U	0.4	U	0.49
Arsenic	10	50	--	µg/L	0.5	U	1.7	J	0.53
Barium	2000	2000	--	µg/L	150		200		200
Calcium	--	--	--	µg/L	50000		160000		66000
Cobalt	--	--	--	µg/L	0.33	U	0.74	J	0.33
Iron	--	--	300	µg/L	200	U	300		200
Magnesium	--	--	--	µg/L	26000		64000		40000
Manganese	--	--	0.05	mg/L	0.003	U	0.11		0.0042
Potassium	--	--	--	µg/L	2200		3000		2900
Sodium	--	--	--	µg/L	43000		53000		51000
Tin	--	--	--	µg/L	0.58	U	0.58	U	0.58
Vanadium	--	--	--	µg/L	1.1	U	2.8	J	1.1
Zinc	--	--	5000	µg/L	10	U	2	U	12
VOCs									
1,1-Dichloroethane	--	--	--	µg/L	0.22	U	1.1	J	0.22
1,2-Dichloroethane	5	5	--	µg/L	0.54	U	1.7	J	0.54
Benzene	5	5	--	µg/L	0.31	U	0.74	J	0.31
cis-1,2-Dichloroethene	70	70	--	µg/L	0.32	U	3.4	J	0.32
Tetrachloroethene	5	5	--	µg/L	0.4	U	2.4	J	0.4
Trichloroethene	5	5	--	µg/L	0.3	U	0.57	J	0.3
Vinyl chloride	2	2	--	µg/L	0.51	U	2.2	J	0.51

Section 4 Tables
Statistical Definitions
Fort Hall Mine Landfill

Abbreviation or Expression	Definition
µg/L	microgram per liter
Confidence Level	confidence level of the Mann Kendall Trend Test
Direction	Mann Kendall trend result
J	estimated result
Last Q	laboratory qualifier for the most recent result (if any)
Latest Result	most recent result
LCL	lower confidence limit of the data set mean
Max Date	most recent date in the analyzed dataset
mg/L	milligram per liter
Min Date	earliest date in the analyzed dataset
NA	not applicable
NC	not calculated
Q	qualifier
RCRA	Resource Conservation and Recovery Act
RCRA regulated chemical	Whether the chemical is RCRA regulated
U	nondetect result
UCL	upper confidence limit of the data set mean
UJ	result estimated to be nondetect
UPL	upper prediction limit
UPL of background	UPL of the mean of the background well (if applicable)

Table 4-1
Cell 1 Statistical Summary - VOCs
Fall 2023 Semiannual Monitoring Report
Fort Hall Mine Landfill

Well ID	Analytes	Unit	Min Date	Max Date	Latest Result	Last Q	Latest Result > Standard	UCL > Standard	Confidence Level %	GSI Toolkit Trend
MW-111D	Benzene	µg/L	01/24/2018	10/13/2023	10		Yes	Yes	99.9	Decreasing
MW-113S	Benzene	µg/L	01/24/2018	10/13/2023	6.7	J	Yes	Yes	94.5	Probably Decreasing
MW-105D	Chloroform	µg/L	01/23/2018	10/10/2023	7.5		Yes	Yes	83.8	No trend
MW-113S	Chloroform	µg/L	01/24/2018	10/13/2023	1.2	J	No	Yes	99.8	Decreasing
MP-1	Tetrachloroethene	µg/L	09/13/2020	10/11/2023	8.8		Yes	Yes	57.6	Stable
MP-2	Tetrachloroethene	µg/L	09/13/2020	10/12/2023	2.4		No	Yes	95.3	Decreasing
MP-3	Tetrachloroethene	µg/L	09/13/2020	10/11/2023	10		Yes	Yes	56	No trend
MP-4	Tetrachloroethene	µg/L	09/13/2020	10/11/2023	12		Yes	Yes	56	No trend
MW-101S	Tetrachloroethene	µg/L	10/05/2018	10/13/2023	11	J	Yes	Yes	98.5	Increasing
MW-105D	Tetrachloroethene	µg/L	01/23/2018	10/10/2023	140		Yes	Yes	95.8	Increasing
MW-105S	Tetrachloroethene	µg/L	01/23/2018	10/10/2023	9.9		Yes	Yes	54.9	No trend
MW-109D	Tetrachloroethene	µg/L	10/06/2018	10/11/2023	14		Yes	Yes	83.3	No trend
MW-109S	Tetrachloroethene	µg/L	10/06/2018	10/12/2023	28	J	Yes	Yes	78.2	No trend
MW-110S	Tetrachloroethene	µg/L	10/06/2018	10/14/2023	12	J	Yes	Yes	89.5	No trend
MW-112D	Tetrachloroethene	µg/L	01/24/2018	10/10/2023	11		Yes	Yes	52.5	Stable
MW-112M	Tetrachloroethene	µg/L	10/05/2018	10/13/2023	7.8	J	Yes	Yes	80.5	No trend
MW-113D	Tetrachloroethene	µg/L	10/04/2018	10/14/2023	0.4	UJ	No	Yes	97.9	Decreasing
MW-113S	Tetrachloroethene	µg/L	01/24/2018	10/13/2023	16	J	Yes	Yes	100	Decreasing
MW-118D	Tetrachloroethene	µg/L	01/23/2018	10/10/2023	8		Yes	Yes	100	Decreasing
MW-119D	Tetrachloroethene	µg/L	01/25/2018	10/10/2023	13		Yes	Yes	99.3	Increasing
MW-119S	Tetrachloroethene	µg/L	01/25/2018	10/10/2023	16		Yes	Yes	98.4	Increasing
MW-120D	Tetrachloroethene	µg/L	01/25/2018	10/10/2023	8.1		Yes	Yes	94.5	Probably Decreasing
MW-120S	Tetrachloroethene	µg/L	01/25/2018	10/10/2023	7.6		Yes	Yes	99.9	Decreasing
RW-2	Tetrachloroethene	µg/L	01/26/2018	10/12/2023	3.1		No	Yes	98.9	Decreasing
RW-3	Tetrachloroethene	µg/L	01/26/2018	10/14/2023	1.6	J	No	Yes	88.5	Stable
MP-1	Trichloroethene	µg/L	09/13/2020	10/11/2023	95		Yes	Yes	50	No trend
MP-2	Trichloroethene	µg/L	09/13/2020	10/12/2023	48		Yes	Yes	96.6	Decreasing
MP-3	Trichloroethene	µg/L	09/13/2020	10/11/2023	41		Yes	Yes	50	No trend
MP-4	Trichloroethene	µg/L	09/13/2020	10/11/2023	73		Yes	Yes	50	Stable
MW-101S	Trichloroethene	µg/L	10/05/2018	10/13/2023	29	J	Yes	Yes	96.4	Increasing
MW-102S	Trichloroethene	µg/L	01/24/2018	10/14/2023	2.6	J	No	Yes	50	No trend
MW-105D	Trichloroethene	µg/L	01/23/2018	10/10/2023	780		Yes	Yes	69	No trend
MW-105S	Trichloroethene	µg/L	01/23/2018	10/10/2023	53		Yes	Yes	99.4	Decreasing
MW-109D	Trichloroethene	µg/L	10/06/2018	10/11/2023	56		Yes	Yes	59.3	Stable
MW-109S	Trichloroethene	µg/L	10/06/2018	10/12/2023	63	J	Yes	Yes	62.3	No trend
MW-110D	Trichloroethene	µg/L	10/07/2018	10/14/2023	17	J	Yes	Yes	81	Stable
MW-110S	Trichloroethene	µg/L	10/06/2018	10/14/2023	67	J	Yes	Yes	95.1	Increasing
MW-111D	Trichloroethene	µg/L	01/24/2018	10/13/2023	22		Yes	Yes	86.4	No trend
MW-112D	Trichloroethene	µg/L	01/24/2018	10/10/2023	190		Yes	Yes	71.3	Stable
MW-112M	Trichloroethene	µg/L	10/05/2018	10/13/2023	110	J	Yes	Yes	71.3	No trend
MW-113D	Trichloroethene	µg/L	10/04/2018	10/14/2023	0.3	UJ	No	Yes	99	Decreasing
MW-113S	Trichloroethene	µg/L	01/24/2018	10/13/2023	16	J	Yes	Yes	100	Decreasing
MW-118D	Trichloroethene	µg/L	01/23/2018	10/10/2023	51		Yes	Yes	100	Decreasing

Fall 2023 Semiannual Cell 1, 2, and 4 Groundwater Monitoring and

Remediation System Operation and Maintenance Report

Fort Hall Mine Landfill, Bannock County, Idaho

Table 4-1
Cell 1 Statistical Summary - VOCs
Fall 2023 Semiannual Monitoring Report
Fort Hall Mine Landfill

Well ID	Analytes	Unit	Min Date	Max Date	Latest Result	Last Q	Latest Result > Standard	UCL > Standard	Confidence Level %	GSI Toolkit Trend
MW-119S	Trichloroethene	µg/L	01/25/2018	10/10/2023	57		Yes	Yes	99	Increasing
MW-120D	Trichloroethene	µg/L	01/25/2018	10/10/2023	140		Yes	Yes	95.7	Increasing
MW-120S	Trichloroethene	µg/L	01/25/2018	10/10/2023	70		Yes	Yes	97.8	Decreasing
MW-123	Trichloroethene	µg/L	04/25/2021	10/14/2023	63	J	Yes	Yes	50	No trend
RW-2	Trichloroethene	µg/L	01/26/2018	10/12/2023	29		Yes	Yes	88.5	Stable
RW-3	Trichloroethene	µg/L	01/26/2018	10/14/2023	2.5	J	No	Yes	88.5	Stable
MP-1	Vinyl chloride	µg/L	09/13/2020	10/11/2023	3.1		Yes	Yes	50	Stable
MP-2	Vinyl chloride	µg/L	09/13/2020	10/12/2023	1.8	J	No	Yes	89.6	Stable
MW-105S	Vinyl chloride	µg/L	01/23/2018	10/10/2023	0.96	J	No	Yes	90.1	Probably Decreasing
MW-110S	Vinyl chloride	µg/L	10/06/2018	10/14/2023	2.6	J	Yes	Yes	90.8	Probably Decreasing
MW-113D	Vinyl chloride	µg/L	10/04/2018	10/14/2023	0.51	UJ	No	Yes	98.3	Decreasing
MW-113S	Vinyl chloride	µg/L	01/24/2018	10/13/2023	66	J	Yes	Yes	94.4	Probably Decreasing
MW-120D	Vinyl chloride	µg/L	01/25/2018	10/10/2023	1.6	J	No	Yes	97.2	Decreasing
RW-2	Vinyl chloride	µg/L	01/26/2018	10/12/2023	9.9		Yes	Yes	96.4	Increasing

See Section 4 Table Notes

Table 4-2
Offsite Statistical Summary - VOCs
Fall 2023 Semiannual Monitoring Report
Fort Hall Mine Landfill

Well ID	Analytes	Unit	Min Date	Max Date	Latest Result	Last Q	Latest Result > Standard	UCL > Standard	Confidence Level %	GSI Toolkit Trend
MW-103S	Trichloroethene	µg/L	08/09/2017	10/14/2023	3	J	No	Yes	95	Increasing
MW-116S	Trichloroethene	µg/L	08/11/2017	10/14/2023	6.5	J	Yes	Yes	98.8	Decreasing

See Section 4 Table Notes

Table 4-3
Remediation System Extraction Well Statistical Summary - PCE and TCE
Fall 2023 Semiannual Monitoring Report
Fort Hall Mine Landfill

Well ID	Analytes	Unit	Min Date	Max Date	Latest Result	Last Q	Latest Result > Standard	UCL > Standard	Confidence Level %	GSI Toolkit Trend
RW-10	Tetrachloroethene	µg/L	01/26/2018	10/12/2023	16	J	Yes	Yes	97.9	Increasing
RW-10	Trichloroethene	µg/L	01/26/2018	10/12/2023	56	J	Yes	Yes	98.1	Increasing
RW-15	Tetrachloroethene	µg/L	01/26/2018	10/12/2023	18	J	Yes	Yes	84.5	No trend
RW-15	Trichloroethene	µg/L	01/26/2018	10/12/2023	94	J	Yes	Yes	68.1	No trend
RW-17	Tetrachloroethene	µg/L	01/26/2018	10/12/2023	20	J	Yes	Yes	94.1	Probably Increasing
RW-17	Trichloroethene	µg/L	01/26/2018	10/12/2023	76	J	Yes	Yes	92.1	Probably Increasing
RW-4	Tetrachloroethene	µg/L	01/26/2018	10/12/2023	18	J	Yes	Yes	64.4	No trend
RW-4	Trichloroethene	µg/L	01/26/2018	10/12/2023	110	J	Yes	Yes	50	Stable
RW-5	Tetrachloroethene	µg/L	01/26/2018	10/12/2023	13	J	Yes	Yes	89.4	No trend
RW-5	Trichloroethene	µg/L	01/26/2018	10/12/2023	45	J	Yes	Yes	86.7	No trend
RW-9R	Tetrachloroethene	µg/L	01/26/2018	10/12/2023	9.5	J	Yes	Yes	53.6	No trend
RW-9R	Trichloroethene	µg/L	01/26/2018	10/12/2023	91	J	Yes	Yes	53.6	Stable

See Section 4 Table Notes

Table 4-4
Spring and Fall 2023 PCE and TCE Trends Comparison
Cell 1 Monitoring Wells

Well ID	Analytes	Spring 2023 Trend	Fall 2023 Trend
MP-3	Tetrachloroethene	Probably Increasing	No trend
MP-4	Tetrachloroethene	Probably Increasing	No trend
MW-101S	Tetrachloroethene	Increasing	Increasing
MW-101S	Trichloroethene	Increasing	Increasing
MW-109D	Tetrachloroethene	Probably Increasing	No trend
MW-110S	Tetrachloroethene	Increasing	No trend
MW-110S	Trichloroethene	Increasing	Increasing
MW-111D	Trichloroethene	Probably Increasing	No trend
MW-112M	Tetrachloroethene	Increasing	No trend
MW-112M	Trichloroethene	Probably Increasing	No trend
MW-119D	Tetrachloroethene	Increasing	Increasing
MW-119D	Trichloroethene	Increasing	Probably Increasing
MW-119S	Tetrachloroethene	Increasing	Increasing
MW-119S	Trichloroethene	Increasing	Increasing
MW-120D	Trichloroethene	Increasing	Increasing

Table 4-5
Cell 1 Statistical Summary - Inorganics
Fall 2023 Semiannual Monitoring Report
Fort Hall Mine Landfill

Well ID	regulated chemical	Analytes	Unit	Min Date	Max Date	Standard source	Standard	Latest Result	Last Q	Latest Result > Standard	Dataset n	ND %
MP-2	No	Iron	µg/L	04/28/2021	10/12/2023	ID GW - SECONDARY	300	720		Yes	3	33.3
MP-2	No	Manganese	mg/L	04/28/2021	10/12/2023	ID GW - SECONDARY	0.05	1.2		Yes	3	0
MW-121	No	Iron	µg/L	10/07/2018	10/13/2023	ID GW - SECONDARY	300	630		Yes	2	0
MW-121	No	Manganese	mg/L	10/07/2018	10/13/2023	ID GW - SECONDARY	0.05	0.93		Yes	2	0
MW-124	No	Iron	µg/L	05/15/2023	10/12/2023	ID GW - SECONDARY	300	2100	J	Yes	2	0
MW-124	No	Manganese	mg/L	05/15/2023	10/12/2023	ID GW - SECONDARY	0.05	5.8		Yes	2	0
MW-125	No	Iron	µg/L	05/15/2023	10/12/2023	ID GW - SECONDARY	300	4500		Yes	2	0
MW-125	No	Manganese	mg/L	05/15/2023	10/12/2023	ID GW - SECONDARY	0.05	1.1		Yes	2	0
RW-2	No	Iron	µg/L	05/16/2023	10/12/2023	ID GW - SECONDARY	300	1700		Yes	2	0
RW-2	No	Manganese	mg/L	05/16/2023	10/12/2023	ID GW - SECONDARY	0.05	4.2		Yes	2	0

See Section 4 Table Notes

Table 4-5
Cell 1 Statistical Summary - Inorganics
Fall 2023 Semiannual Monitoring Report
Fort Hall Mine Landfill

Well ID	regulated chemical	Analytes	Unit	Parameter est. method	Dataset mean	sd	CL method	CL conf	UCL of the mean	UCL > Standard
MP-2	No	Iron	µg/L	NP Kaplan-Meier	281	310	Bootstrap	0.95	720	Yes
MP-2	No	Manganese	mg/L	Ordinary nonparametric bootstrap	0.57	0.599	BCa bootstrap	0.95	1.2	Yes
MW-121	No	Iron	µg/L	Ordinary nonparametric bootstrap	1620	1390	BCa bootstrap	0.95	2600	Yes
MW-121	No	Manganese	mg/L	Ordinary nonparametric bootstrap	1.56	0.898	BCa bootstrap	0.95	2.2	Yes
MW-124	No	Iron	µg/L	Ordinary nonparametric bootstrap	4100	2830	BCa bootstrap	0.95	6100	Yes
MW-124	No	Manganese	mg/L	Ordinary nonparametric bootstrap	14.4	12.2	BCa bootstrap	0.95	23	Yes
MW-125	No	Iron	µg/L	Ordinary nonparametric bootstrap	3450	1480	BCa bootstrap	0.95	4500	Yes
MW-125	No	Manganese	mg/L	Ordinary nonparametric bootstrap	0.577	0.74	BCa bootstrap	0.95	1.1	Yes
RW-2	No	Iron	µg/L	Ordinary nonparametric bootstrap	1180	728	BCa bootstrap	0.95	1700	Yes
RW-2	No	Manganese	mg/L	Ordinary nonparametric bootstrap	4.45	0.354	BCa bootstrap	0.95	4.7	Yes

See Section 4 Table Notes

Table 4-6
Cell 2 Statistical Summary - VOCs
Fall 2023 Semiannual Monitoring Report
Fort Hall Mine Landfill

Well ID	RCRA regulated chemical	Analytes	Unit	Min Date	Max Date	Latest Result	Last Q	Latest Result > Standard	LCL > Standard	Confidence Level %	Direction
MW-8	Yes	Acetone	µg/L	04/12/2018	10/13/2023	6.6	UJ	NA	NC	NC	NC
MW-9	Yes	1,2-Dichloroethane	µg/L	04/12/2018	10/13/2023	0.54	UJ	No	NC	NC	NC
MW-9	Yes	Acetone	µg/L	04/12/2018	10/13/2023	6.6	UJ	NA	NC	NC	NC
MW-9	Yes	Benzene	µg/L	04/12/2018	10/13/2023	0.31	UJ	No	NC	NC	NC
MW-9	Yes	Dichlorodifluoromethane	µg/L	04/12/2018	10/13/2023	0.96	UJ	NA	NC	NC	NC
MW-9	Yes	Vinyl chloride	µg/L	04/12/2018	10/13/2023	0.51	UJ	No	No	NC	NC
MW-12	Yes	1,2,4-Trichlorobenzene	µg/L	04/13/2018	10/12/2023	0.58	U	No	NC	NC	NC
MW-12	Yes	1,2-Dichloroethane	µg/L	04/13/2018	10/12/2023	0.54	U	No	NC	NC	NC
MW-12	Yes	Iodomethane	µg/L	04/13/2018	10/12/2023	2.6	U	NA	NC	NC	NC
MW-13	Yes	1,1-Dichloroethane	µg/L	04/12/2018	10/11/2023	0.22	U	NA	NC	NC	NC
MW-13	Yes	1,2-Dichloroethane	µg/L	04/12/2018	10/11/2023	0.54	U	No	NC	NC	NC
MW-13	Yes	cis-1,2-Dichloroethene	µg/L	04/12/2018	10/11/2023	1.2		No	No	100	Increasing
MW-13	Yes	Dichlorodifluoromethane	µg/L	04/12/2018	10/11/2023	1	J	NA	NC	94.6	No Trend
MW-13	Yes	Iodomethane	µg/L	04/12/2018	10/11/2023	2.6	U	NA	NC	NC	NC
MW-13	Yes	Tetrachloroethene	µg/L	04/12/2018	10/11/2023	0.4	U	No	No	NC	NC
MW-13	Yes	Trichloroethene	µg/L	04/12/2018	10/11/2023	0.31	J	No	No	NC	NC
MW-13	Yes	Trichlorofluoromethane	µg/L	04/12/2018	10/11/2023	0.57	U	NA	NC	NC	NC

See combined Section 4 Table notes.

Table 4-7
Cell 2 Statistical Summary - Other Organics
Fall 2023 Semiannual Monitoring Report
Fort Hall Mine Landfill

Well ID	RCRA regulated chemical	Analytes	Unit	Min Date	Max Date	Latest Result	Last Q	Latest Result > Standard	LCL > Standard
MW-9	Yes	Benzo[a]pyrene	µg/L	04/12/2018	10/13/2023	0.026	J-	No	No
MW-12	Yes	4,4'-DDE	µg/L	10/08/2018	10/12/2023	0.014	J	NC	NC
MW-12	Yes	Isodrin	µg/L	10/08/2018	10/12/2023	0.031	J	NC	NC
MW-13	Yes	4,4'-DDD	µg/L	10/06/2018	10/11/2023	0.016	J	NC	NC
MW-13	Yes	4,4'-DDE	µg/L	10/06/2018	10/11/2023	0.11	J	NC	NC
MW-13	Yes	4,4'-DDT	µg/L	10/06/2018	10/11/2023	0.12	J	NC	NC
MW-13	Yes	Aldrin	µg/L	10/06/2018	10/11/2023	0.011	J	NC	NC
MW-13	Yes	Di-n-butyl phthalate	µg/L	10/06/2018	10/11/2023	19	J+	NC	NC
MW-13	Yes	Dieldrin	µg/L	10/06/2018	10/11/2023	0.012	J	NC	NC
MW-13	Yes	Endosulfan I	µg/L	10/06/2018	10/11/2023	0.011	J	NC	NC
MW-13	Yes	Endosulfan II	µg/L	10/06/2018	10/11/2023	0.015	J	NC	NC
MW-13	Yes	Endosulfan sulfate	µg/L	10/06/2018	10/11/2023	0.0049	J	NC	NC
MW-13	Yes	Endrin	µg/L	10/06/2018	10/11/2023	0.013	J	No	NC
MW-13	Yes	Heptachlor	µg/L	10/06/2018	10/11/2023	0.011	J	No	NC
MW-13	Yes	Heptachlor epoxide	µg/L	10/06/2018	10/11/2023	0.014	J	No	NC
MW-13	Yes	Methoxychlor	µg/L	10/06/2018	10/11/2023	0.014	J	No	NC
MW-13	Yes	alpha-BHC	µg/L	10/06/2018	10/11/2023	0.01	J	NC	NC
MW-13	Yes	beta-BHC	µg/L	10/06/2018	10/11/2023	0.01	J	NC	NC
MW-13	Yes	delta-BHC	µg/L	10/06/2018	10/11/2023	0.012	J	NC	NC

See combined Section 4 Table notes.

Table 4-8
Cell 2 Statistical Summary - Inorganics
Fall 2023 Semiannual Monitoring Report
Fort Hall Mine Landfill

Well ID	regulated chemical	Analytes	Unit	Min Date	Max Date	Latest Result	Last Q	Latest Result > Standard	LCL > Standard	Latest Result > UPL of background	Confidence Level %	Direction
MW-13	Yes	Arsenic	µg/L	04/12/2018	10/11/2023	3.8	J	No	No	Yes	83.7	No Trend
MW-13	Yes	Barium	µg/L	04/12/2018	10/11/2023	110		No	No	Yes	77.5	No Trend
MW-13	No	Magnesium	µg/L	04/12/2018	10/11/2023	38000		NC	NC	Yes	88.6	No Trend
MW-13	No	Manganese	mg/L	04/12/2018	10/11/2023	0.0041	J+	No	No	Yes	96.9	Decreasing
MW-8	Yes	Arsenic	µg/L	04/12/2018	10/13/2023	3	J	No	No	Yes	99.7	Decreasing
MW-8	No	Magnesium	µg/L	04/12/2018	10/13/2023	19000		NC	NC	Yes	55.6	No Trend
MW-9	No	Calcium	µg/L	04/12/2018	10/13/2023	290000		NC	NC	Yes	95.7	Decreasing
MW-9	No	Iron	µg/L	04/12/2018	10/13/2023	1700		Yes	Yes	Yes	99.6	Increasing
MW-9	No	Magnesium	µg/L	04/12/2018	10/13/2023	240000		NC	NC	Yes	92.5	No Trend
MW-9	No	Manganese	mg/L	04/12/2018	10/13/2023	2.4		Yes	Yes	Yes	91.5	No Trend
MW-9	Yes	Nickel	µg/L	04/12/2018	10/13/2023	2.3	J	NC	NC	Yes	100	Decreasing
MW-9	No	Potassium	µg/L	04/12/2018	10/13/2023	4200		NC	NC	Yes	98.3	Decreasing
MW-9	No	Sodium	µg/L	04/12/2018	10/13/2023	470000		NC	NC	Yes	95	Decreasing
MW-9	Yes	Zinc	µg/L	04/12/2018	10/13/2023	26		No	No	Yes	99.9	Decreasing

See combined Section 4 Table notes.

Table 4-9
Cell 4 Statistical Summary - VOCs
Fall 2023 Semiannual Monitoring Report
Fort Hall Mine Landfill

Well ID	regulated chemical	Analytes	Unit	Min Date	Max Date	Latest Result	Last Q	Latest Result > Standard	LCL > Standard	Confidence Level %	Direction
MW-3A	Yes	1,2,4-Trichlorobenzene	µg/L	10/08/2018	10/10/2023	0.58	U	No	NC	NC	NC
MW-3A	Yes	1,4-Dichlorobenzene	µg/L	04/11/2018	10/10/2023	0.39	U	No	NC	NC	NC
MW-3A	Yes	Acrylonitrile	µg/L	04/11/2018	10/10/2023	4.5	U	NC	NC	NC	NC
MW-3A	Yes	Iodomethane	µg/L	04/11/2018	10/10/2023	2.6	U	NC	NC	NC	NC
MW-3A	Yes	Trichloroethene	µg/L	04/11/2018	10/10/2023	0.3	U	No	NC	NC	NC
MW-4A	Yes	Trichloroethene	µg/L	04/11/2018	10/10/2023	0.3	U	No	NC	NC	NC
MW-5AR	Yes	Carbon disulfide	µg/L	07/21/2021	10/10/2023	0.63	U	NC	NC	NC	NC
MW-5AR	Yes	Toluene	µg/L	07/21/2021	10/10/2023	0.32	U	No	No	NC	NC
MW-4	Yes	1,1,1-Trichloroethane	µg/L	04/11/2018	10/12/2023	0.39	UJ	No	No	NC	NC
MW-4	Yes	1,1-Dichloroethane	µg/L	04/11/2018	10/12/2023	1.1	J	NC	NC	99.9	Increasing
MW-4	Yes	1,2-Dichloroethane	µg/L	04/11/2018	10/12/2023	1.7	J	No	No	NC	NC
MW-4	Yes	Benzene	µg/L	04/11/2018	10/12/2023	0.74	J	No	No	100	Increasing
MW-4	Yes	Chlorobenzene	µg/L	04/11/2018	10/12/2023	0.42	UJ	No	NC	NC	NC
MW-4	Yes	cis-1,2-Dichloroethene	µg/L	04/11/2018	10/12/2023	3.4	J	No	No	96.3	Increasing
MW-4	Yes	Dichlorodifluoromethane	µg/L	10/05/2018	10/12/2023	0.96	UJ	NC	NC	76.2	NC
MW-4	Yes	Iodomethane	µg/L	04/11/2018	10/12/2023	2.6	UJ	NC	NC	NC	NC
MW-4	No	o-xylene	µg/L	05/01/2019	10/12/2023	0.33	UJ	No	NC	NC	NC
MW-4	Yes	Tetrachloroethene	µg/L	04/11/2018	10/12/2023	2.4	J	No	No	99.7	Decreasing
MW-4	Yes	trans-1,2-Dichloroethene	µg/L	04/11/2018	10/12/2023	0.37	UJ	No	No	98.2	NC
MW-4	Yes	Trichloroethene	µg/L	04/11/2018	10/12/2023	0.57	J	No	No	98	Increasing
MW-4	Yes	Vinyl chloride	µg/L	04/11/2018	10/12/2023	2.2	J	Yes	No	99.6	Increasing
MW-4	Yes	Xylenes, total	µg/L	04/11/2018	10/12/2023	0.33	UJ	No	NC	NC	NC

See combined Section 4 Table notes.

Table 4-10
Cell 4 Statistical Summary - Inorganics
Fall 2023 Semiannual Monitoring Report
Fort Hall Mine Landfill

Well ID	RCRA regulated chemical	Analytes	Unit	Min Date	Max Date	Latest Result	Last Q	Latest Result > Standard	LCL > Standard	Latest Result > UPL of background	Confidence Level %	Direction
MW-3A	No	Magnesium	µg/L	04/11/2018	10/10/2023	26000		NC	NC	Yes	99.1	Decreasing
MW-5AR	No	Magnesium	µg/L	07/21/2021	10/10/2023	24000		NC	NC	Yes	91	No Trend
MW-5AR	No	Sodium	µg/L	07/21/2021	10/10/2023	240000		NC	NC	Yes	71.7	No Trend
MW-6A	Yes	Barium	µg/L	04/11/2018	10/11/2023	200		No	No	Yes	87.2	No Trend
MW-6A	No	Magnesium	µg/L	04/11/2018	10/11/2023	40000		NC	NC	Yes	98.2	Decreasing
MW-6A	Yes	Zinc	µg/L	04/11/2018	10/11/2023	12		No	No	Yes	NC	NC
MW-4	Yes	Barium	µg/L	04/11/2018	10/12/2023	200		No	No	Yes	94.7	No Trend
MW-4	No	Calcium	µg/L	04/11/2018	10/12/2023	160000		NC	NC	Yes	98	Increasing
MW-4	Yes	Cobalt	µg/L	04/11/2018	10/12/2023	0.74	J	NC	NC	Yes	99.7	Decreasing
MW-4	No	Iron	µg/L	04/11/2018	10/12/2023	300		No	Yes	Yes	87.8	No Trend
MW-4	No	Magnesium	µg/L	04/11/2018	10/12/2023	64000		NC	NC	Yes	68.5	No Trend
MW-4	No	Manganese	mg/L	04/11/2018	10/12/2023	0.11		Yes	Yes	Yes	100	Decreasing
MW-4	Yes	Vanadium	µg/L	04/11/2018	10/12/2023	2.8	J	NC	NC	Yes	99.7	Increasing

See combined Section 4 Table notes.

Table 5-1
Recommendations for Spring 2024 Sampling

Location Group	Location	Sampling Approach	Water Levels	Field parameters ¹	Appendix II RCRA Subtitle D Parameters												
					Appendix I			Additional Appendix II									
					VOCs		Total metals	SVOCs		O/C Pest ²	O/P Pest	Chlor Herb	PCBs ²	Dioxin/Furan	Mercury	Cyanide	Total Sulfide
				water quality meter	8260D	8011	6020B/6010C	8270E	8270E SIM	8081B	8141B	8321B	8082A	8290	7470A	SM4500-CN-E	SM 4500S-2
Cell 1	MP-1	Passive	X	X	X												
Cell 1	MP-2	Portable Pump ⁴	X	X	X												
Cell 1	MP-3	Passive	X	X	X												
Cell 1	MP-4	Passive	X	X	X	X											
Cell 1	MP-9	NA	X														
Cell 1	MW-1	NA	X														
Cell 1	MW-101S	Passive	X	X	X												
Cell 1	MW-102S	Dedicated Pump	X	X	X												
Cell 1	MW-104D	NA	X														
Cell 1	MW-104S	NA	X														
Cell 1	MW-105D	Dedicated	X	X	X												
Cell 1	MW-105S	Dedicated	X	X	X												
Cell 1	MW-109D	Passive	X	X	X												
Cell 1	MW-109S	Passive	X	X	X												
Cell 1	MW-110D	Passive	X	X	X												
Cell 1	MW-110S	Passive	X	X	X												
Cell 1	MW-111D	Dedicated	X	X	X												
Cell 1	MW-111S	Bail (If Not DRY)	X	X	X												
Cell 1	MW-112D	Dedicated Pump	X	X	X												
Cell 1	MW-112M	Passive	X	X	X												
Cell 1	MW-112S	Bail (If Not DRY)	X														
Cell 1	MW-113D	Passive	X	X	X												
Cell 1	MW-113S	Dedicated	X	X	X												
Cell 1	MW-117R	Bail (If Not DRY)	X	X	X												
Cell 1	MW-118D	Dedicated	X	X	X												
Cell 1	MW-119D	Dedicated	X	X	X												
Cell 1	MW-119S	Dedicated	X	X	X												
Cell 1	MW-120D	Dedicated	X	X	X												
Cell 1	MW-120S	Dedicated	X	X	X												
Cell 1	MW-121	Not Sampled	X														
Cell 1	MW-122	Bail (If Not DRY)	X	X	X												
Cell 1	MW-123	Passive	X	X	X												
Cell 1	MW-124	Portable Pump ⁴	X	X	X												
Cell 1	MW-125	Portable Pump ⁴	X	X	X												
Cell 1	RW-1	Portable Pump ⁴	X	X	X												
Cell 1	RW-16	Portable Pump ⁴	X														
Cell 1	RW-2	Portable Pump ⁴	X	X	X												
Cell 1	RW-3	Portable Pump ⁴	X	X	X												
Cell 2	MW-12	Dedicated	X	X	X	X	X	X	X	X	X	X	X				
Cell 2	MW-13	Dedicated	X	X	X	X	X	X	X	X	X	X	X				
Cell 2	MW-7	Dedicated	X														
Cell 2	MW-8	Dedicated	X	X	X	X	X	X	X	X	X	X	X				
Cell 2	MW-9	Dedicated	X	X	X	X	X	X	X	X	X	X	X				
Cell 4	MW-3A	Dedicated	X	X	X	X	X	X									
Cell 4	MW-4	Dedicated	X	X	X	X	X	X									
Cell 4	MW-4A	Dedicated	X	X	X	X	X	X									
Cell 4	MW-5AR	Dedicated	X	X	X	X	X	X									
Cell 4	MW-6A	Dedicated	X	X	X	X	X	X									
Offsite	MW-103D	NA	X														
Offsite	MW-103S	Dedicated	X	X	X												
Offsite	MW-106D	NA	X														
Offsite	MW-106S	NA	X														
Offsite	MW-115D	NA	X														

Table 5-1
Recommendations for Spring 2024 Sampling

Location Group	Location	Sampling Approach	Water Levels	Field parameters ¹	Appendix II RCRA Subtitle D Parameters												
					Appendix I				Additional Appendix II								
					VOCs		Total metals	SVOCs		O/C Pest ²	O/P Pest	Chlor Herb	PCBs ³	Dioxin/Furan	Mercury	Cyanide	Total Sulfide
				water quality meter	8260D	8011	6020B/6010C	8270E	8270E SIM	8081B	8141B	8321B	8082A	8290	7470A	SM4500-CN-E	SM 4500S-2
Offsite	MW-115S	Passive	X	X	X												
Offsite	MW-116D	NA															
Offsite	MW-116S	Portable Pump		X	X												
RSE	RW-10	Tap		X	X												
RSE	RW-15	Tap		X	X												
RSE	RW-17	Tap		X	X												
RSE	RW-4	Tap		X	X												
RSE	RW-5	Tap		X	X												
RSE	RW-9R	Tap		X	X												
System Effluent*	INJ-1R	Tap			X	X	X	X	X	X	X	X	X	X	X	X	X

Notes

Parameters specified for analysis are for routine monitoring and may not include those analyzed for pilot or tracer study monitoring.

* INJ-1R will also be sampled for VOCs (8260B) in the winter and summer

¹ Field parameters include pH, oxidation reduction potential, turbidity, dissolved oxygen, specific conductivity, and temperature

² PCBs and O/C Pest are collected in the same bottle

³ Anions include sulfate, chloride, and bromide

⁴ After spring 2024, these wells will be sampled via passive methods.

Acronyms and Abbreviations

Chlor Herb = chlorinated herbicides

Herb = herbicide

O/C = organochlorine

O/P = organophosphate

PCBs = polychlorinated biphenyls

Pest = pesticide

RCRA = Resource Conservation and Recovery Act

RSE = remediation system extraction

SVOCs = semivolatile organic compounds

VOCs = volatile organic compounds

Table 5-2
Recommendations for Fall 2024 Sampling

Location Group	Location	Sampling Approach	Water Levels	Field parameters ¹	Appendix II RCRA Subtitle D Parameters														
					Appendix I			Total metals	SVOCs			O/C Pest ²	O/P Pest	Chlor Herb	PCBs ²	Dioxin/Furan	Mercury	Cyanide	Total Sulfide
					VOCs		8260D		8011	6020B/6010C	8270E	8270E SIM	8081B	8141B	8321B	8082A	8290	7470A	SM4500-CNE
Cell 1	MP-1	Passive	X	X	X														
Cell 1	MP-2	Passive	X	X	X														
Cell 1	MP-3	Passive	X	X	X														
Cell 1	MP-4	Passive	X	X	X														
Cell 1	MP-9	NA	X																
Cell 1	MW-1	NA	X																
Cell 1	MW-101S	Passive	X	X	X														
Cell 1	MW-102S	Dedicated Pump	X	X	X														
Cell 1	MW-104D	NA	X																
Cell 1	MW-104S	NA	X																
Cell 1	MW-105D	Dedicated	X	X	X														
Cell 1	MW-105S	Dedicated	X	X	X														
Cell 1	MW-109D	Passive	X	X	X														
Cell 1	MW-109S	Passive	X	X	X														
Cell 1	MW-110D	Passive	X	X	X														
Cell 1	MW-110S	Passive	X	X	X														
Cell 1	MW-111D	Dedicated	X	X	X														
Cell 1	MW-111S	Bail (If Not DRY)	X	X	X														
Cell 1	MW-112D	Dedicated Pump	X	X	X														
Cell 1	MW-112M	Passive	X	X	X														
Cell 1	MW-112S	Bail (If Not DRY)	X																
Cell 1	MW-113D	Passive	X	X	X														
Cell 1	MW-113S	Dedicated	X	X	X														
Cell 1	MW-117R	Bail (If Not DRY)	X	X	X														
Cell 1	MW-118D	Dedicated	X	X	X														
Cell 1	MW-119D	Dedicated	X	X	X														
Cell 1	MW-119S	Dedicated	X	X	X														
Cell 1	MW-120D	Dedicated	X	X	X														
Cell 1	MW-120S	Dedicated	X	X	X														
Cell 1	MW-121	Not Sampled																	
Cell 1	MW-122	Bail (If Not DRY)	X	X	X														
Cell 1	MW-123	Passive	X	X	X														
Cell 1	MW-124	Passive	X	X	X														
Cell 1	MW-125	Passive	X	X	X														
Cell 1	RW-1	Passive	X	X	X														
Cell 1	RW-16	Passive	X																
Cell 1	RW-2	Passive	X	X	X														
Cell 1	RW-3	Passive	X	X	X														
Cell 2	MW-12	Dedicated	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
Cell 2	MW-13	Dedicated	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
Cell 2	MW-7	Dedicated	X																
Cell 2	MW-8	Dedicated	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
Cell 2	MW-9	Dedicated	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
Cell 4	MW-3A	Dedicated	X	X	X	X	X												
Cell 4	MW-4	Dedicated	X	X	X	X	X												
Cell 4	MW-4A	Dedicated	X	X	X	X	X												
Cell 4	MW-5AR	Dedicated	X	X	X	X	X												
Cell 4	MW-6A	Dedicated	X	X	X	X	X												
Offsite	MW-103D	NA	X																
Offsite	MW-103S	Dedicated	X	X	X														
Offsite	MW-106D	NA	X																
Offsite	MW-106S	NA	X																

Table 5-2
Recommendations for Fall 2024 Sampling

Location Group	Location	Sampling Approach	Water Levels	Field parameters ¹	Appendix II RCRA Subtitle D Parameters														
					Appendix I			Total metals	SVOCs			O/C Pest ²	O/P Pest	Chlor Herb	PCBs ²	Dioxin/ Furan	Mercury	Cyanide	Total Sulfide
					VOCs	8260D	8011		6020B/ 6010C	8270E	8270E SIM	8081B	8141B	8321B	8082A	8290	7470A	SM4500-CN E	SM 4500S-2
Offsite	MW-115D	NA	X																
Offsite	MW-115S	Passive	X	X	X														
Offsite	MW-116D	NA																	
Offsite	MW-116S	Portable Pump		X	X														
RSE	RW-10	Tap			X	X													
RSE	RW-15	Tap			X	X													
RSE	RW-17	Tap			X	X													
RSE	RW-4	Tap			X	X													
RSE	RW-5	Tap			X	X													
RSE	RW-9R	Tap				X	X												
System Effluent*	INJ-1R	Tap				X	X	X	X	X	X	X	X	X	X	X	X	X	

Notes

Parameters specified for analysis are for routine monitoring and may not include those analyzed for pilot or tracer study monitoring.

* INJ-1R will also be sampled for VOCs (8260B) in the winter and summer

¹ Field parameters include pH, oxidation reduction potential, turbidity, dissolved oxygen, specific conductivity, and temperature

² PCBs and O/C Pest are collected in the same bottle

³ Anions include sulfate, chloride, and bromide

Acronyms and Abbreviations

Chlor Herb = chlorinated herbicides

Herb = herbicide

O/C = organochlorine

O/P = organophosphate

PCBs = polychlorinated biphenyls

Pest = pesticide

RCRA = Resource Conservation and Recovery Act

RSE = remediation system extraction

SVOCs = semivolatile organic compounds

VOCs = volatile organic compounds